首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3757篇
  免费   228篇
  国内免费   2篇
  3987篇
  2023年   19篇
  2022年   59篇
  2021年   104篇
  2020年   64篇
  2019年   81篇
  2018年   113篇
  2017年   89篇
  2016年   121篇
  2015年   213篇
  2014年   220篇
  2013年   271篇
  2012年   310篇
  2011年   331篇
  2010年   170篇
  2009年   163篇
  2008年   196篇
  2007年   205篇
  2006年   188篇
  2005年   193篇
  2004年   169篇
  2003年   150篇
  2002年   147篇
  2001年   41篇
  2000年   25篇
  1999年   34篇
  1998年   26篇
  1997年   24篇
  1996年   16篇
  1995年   14篇
  1994年   17篇
  1993年   17篇
  1992年   20篇
  1991年   21篇
  1990年   14篇
  1989年   17篇
  1988年   14篇
  1987年   7篇
  1986年   10篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   8篇
  1977年   6篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
排序方式: 共有3987条查询结果,搜索用时 0 毫秒
991.
Adhesion to the intestinal mucosa is generally considered an important property of probiotic microorganisms and has been related to many of their health benefits. This study investigated some factors that could affect or be involved in the adherence of Propionibacterium acidipropionici CRL 1198, a dairy strain with suggested probiotic effects and high adherence in vitro and in vivo to intestinal epithelial cells. In vitro adhesion of propionibacteria was decreased by gastric digestion but not affected by bile and pancreatic enzymes. Adherence was also decreased by pretreatment of bacterial cells with protease, sodium metaperiodate, and trichloroacetic acid, revealing that different features of the cell surface, like protein factors, carbohydrates, and teichoic acids, are involved in the process. Adherence to intestinal epithelial cells was enhanced by calcium and was dependent on other divalent cations. Adhesion to intestinal mucus was also demonstrated. The results should explain the metabolic effects in the host previously obtained with this strain and support the potential of Propionibacterium for development of new probiotics.  相似文献   
992.
Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ~90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition.  相似文献   
993.
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.  相似文献   
994.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic trait that can cause hemolytic anemia. To date, over 150 nonsynonymous mutations have been identified in G6PD, with pathogenic mutations clustering near the dimer and/or tetramer interface and the allosteric NADP+-binding site. Recently, our lab identified a small molecule that activates G6PD variants by stabilizing the allosteric NADP+ and dimer complex, suggesting therapeutics that target these regions may improve structural defects. Here, we elucidated the connection between allosteric NADP+ binding, oligomerization, and pathogenicity to determine whether oligomer stabilization can be used as a therapeutic strategy for G6PD deficiency (G6PDdef). We first solved the crystal structure for G6PDK403Q, a mutant that mimics the physiological acetylation of wild-type G6PD in erythrocytes and demonstrated that loss of allosteric NADP+ binding induces conformational changes in the dimer. These structural changes prevent tetramerization, are unique to Class I variants (the most severe form of G6PDdef), and cause the deactivation and destabilization of G6PD. We also introduced nonnative cysteines at the oligomer interfaces and found that the tetramer complex is more catalytically active and stable than the dimer. Furthermore, stabilizing the dimer and tetramer improved protein stability in clinical variants, regardless of clinical classification, with tetramerization also improving the activity of G6PDK403Q and Class I variants. These findings were validated using enzyme activity and thermostability assays, analytical size-exclusion chromatography (SEC), and SEC coupled with small-angle X-ray scattering (SEC-SAXS). Taken together, our findings suggest a potential therapeutic strategy for G6PDdef and provide a foundation for future drug discovery efforts.  相似文献   
995.
Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.  相似文献   
996.
In this report we describe the 1,500-fold purification and characterization of the haemolytic phospholipase C (PLC) of Pseudomonas aeruginosa, the paradigm member of a novel PLC/phosphatase superfamily. Members include proteins from Mycobacterium tuberculosis, Bordetella spp., Francisella tularensis and Burkholderia pseudomallei. Purification involved overexpression of the plcHR1,2 operon, ion exchange chromatography and native preparative polyacrylamide gel electrophoresis. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry confirmed the presence of two proteins in the purified sample with sizes of 17,117.2 Da (PlcR2) and 78,417 Da (PlcH). Additionally, liquid chromatography electrospray mass spectrometry (LCMS) revealed that PlcH and PlcR2 are at a stoichiometry of 1 : 1. Western blot analysis demonstrated that the enzyme purifies as a heterodimeric complex, PlcHR2. PlcHR2 is only active on choline-containing phospholipids. It is equally active on phosphatidylcholine (PC) and sphingomyelin (SM) and is able to hydrolyse plasmenylcholine phospholipids (plasmalogens). Neither PlcHR2 nor the M. tuberculosis homologues are inhibited by D609 a widely used, competitive inhibitor of the Bacillus cereus PLC. PlcH, PlcR2, and the PlcHR2 complex bind calcium. While calcium has no detectable effect on enzymatic activity, it inhibits the haemolytic activity of PlcHR2. In addition to being required for the secretion of PlcH, the chaperone PlcR2 affects both the enzymatic and haemolytic properties of PlcH. Inclusive in these data is the conclusion that the members of this PC-PLC and phosphatase family possess a novel mechanism for the recognition and hydrolysis of their respective substrates.  相似文献   
997.
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, σB, which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and ΔsigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the ΔsigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both ΔsigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is σB independent. σB-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional σB reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. σB does not appear to contribute to pHi homeostasis through regulation of net proton movement across the cell membrane or by regulation of pHi buffering by the GAD system under the conditions examined in this study. In summary, a functional σB protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.  相似文献   
998.
( ± )-cis-γ-Irone (1a), ( ± )-cis-dihydro-γ-irone (2a) and their trans- isomers (1b, 2b) were synthesized via 3,3-(Claisen) or 2,3-sigmatropic rearrangement of 1-hydroxymethyl-3,3,4- trimethyl-1-cyclo he xene (8) derivatives as each key step.  相似文献   
999.
Ulex europaeus agglutinin-I (UEA-I) recognizes the Fuc alpha 1----2 Gal linkage. Receptors for UEA-I were not detected in mouse embryos until the 13th day of embryo-genesis, except for their temporary expression in early trophectoderm cells. In adult mice, UEA-I receptors were detected at various sites, including cells of the digestive tracts, the bronchial epithelium, Hassall's corpuscle of the thymus, and the skin. The fucose-binding protein of Lotus tetragonolobus (FBP) is another lectin that recognizes fucosyl residues. The distribution of FBP receptors was significantly different from that of UEA-I receptors. FBP receptors were first detected in late 8-cell embryos and were expressed in the embryonic ectoderm, visceral endoderm, and trophoblastic giant cells in egg-cylinders. At later stages, the distribution of FBP receptors became restricted to certain parts of the embryo. In the adult, the distribution of FBP receptors was more restricted than that of UEA-I receptors. Particularly in embryos before the 11th day of gestation, the distribution of FBP receptors resembled that of SSEA-1, which is defined by the Gal beta 1----4(Fuc alpha 1----3) GlcNAc linkage. From the specificity of FBP, we inferred that the disappearance of SSEA-1 and FBP receptors during embryogenesis is not the result of alpha 1----2 fucosylation of the terminal galactosyl residue in the determinant. The fact that the expression of two fucose-related cell-surface markers, i.e., UEA-I receptors and SSEA-1 (or FBP receptors), is developmentally regulated in an entirely different fashion is an excellent example illustrating the precise control of differentiation-dependent alterations in cell-surface carbohydrates.  相似文献   
1000.
A hepatitis C virus E(2) protein-derived sequence was selected for studying the effect of N-glycosylation on the peptide chain's conformational structure. The results suggested that the (534)TDVF(537) motif contained in peptide 33402 ((529)WGENDTDVFVLNNTRY(544)) had a type III beta-turn, relevant in antigen recognition of polyclonal antibodies, binding to human cells, and binding to HLA DRB1 *0401 molecules. N-Glycopeptides derived from this sequence contained monosaccharides in Asn(532). N-Glycopeptides presented differences in peptide chain structure compared to non-glycosylated peptides. Peptide 33402 specifically bound to human cells, specificity becoming lost when it was N-glycosylated. N-Glycosylation decreased antigen recognition of mouse polyclonal sera against this sequence. N-Glycopeptide binding to HLA DRB1 *0401 molecules was similar to that presented by non-glycosylated peptide, indicating that N-glycosylation did not affect binding to HLA DRB1 *0401 molecules. N-Glycosylation induced changes at structural and functional level which could be relevant for modulating human cell binding properties and antibody recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号