首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7009篇
  免费   697篇
  2023年   33篇
  2022年   76篇
  2021年   142篇
  2020年   90篇
  2019年   106篇
  2018年   152篇
  2017年   113篇
  2016年   200篇
  2015年   306篇
  2014年   304篇
  2013年   420篇
  2012年   493篇
  2011年   451篇
  2010年   307篇
  2009年   276篇
  2008年   401篇
  2007年   390篇
  2006年   325篇
  2005年   295篇
  2004年   297篇
  2003年   268篇
  2002年   227篇
  2001年   140篇
  2000年   139篇
  1999年   125篇
  1998年   102篇
  1997年   71篇
  1996年   94篇
  1995年   78篇
  1994年   69篇
  1993年   46篇
  1992年   97篇
  1991年   87篇
  1990年   78篇
  1989年   66篇
  1988年   61篇
  1987年   40篇
  1986年   45篇
  1985年   65篇
  1984年   60篇
  1983年   43篇
  1982年   37篇
  1981年   27篇
  1980年   25篇
  1979年   40篇
  1978年   28篇
  1977年   41篇
  1973年   26篇
  1972年   33篇
  1971年   25篇
排序方式: 共有7706条查询结果,搜索用时 15 毫秒
901.
Recent advances in technology have led to the realization that the populations of naive T cells specific for different foreign peptide:MHC (p:MHC) ligands vary in size. This variability is due, in part, to the fact that certain peptides contain amino acids that engage in particularly favorable interactions with TCRs. In addition, deletion of clones with cross-reactivity for self-p:MHC ligands may reduce the size of some naive populations. In many cases, the magnitude of the immune response to individual p:MHC epitopes correlates with the size of the corresponding naive populations. However, this simple relationship may be complicated by variability in the efficiency of T cell recruitment into the immune response. The knowledge that naive population size can predict immune response magnitude may create opportunities for production of more effective subunit vaccines.  相似文献   
902.
Interactions between spores of Bacillus anthracis and macrophages are critical for the development of anthrax infections, as spores are thought to use macrophages as vehicles to disseminate in the host. In this study, we report a novel mechanism for phagocytosis of B. anthracis spores. Murine macrophage-like cell line RAW264.7, bone marrow-derived macrophages, and primary peritoneal macrophages from mice were used. The results indicated that activation of the classical complement pathway (CCP) was a primary mechanism for spore phagocytosis. Phagocytosis was significantly reduced in the absence of C1q or C3. C3 fragments were found deposited on the spore surface, and the deposition was dependent on C1q and Ca(2+). C1q recruitment to the spore surface was mediated by the spore surface protein BclA, as recombinant BclA bound directly and specifically to C1q and inhibited C1q binding to spores in a dose-dependent manner. C1q binding to spores lacking BclA (ΔbclA) was also significantly reduced compared with wild-type spores. In addition, deposition of both C3 and C4 as well as phagocytosis of spores were significantly reduced when BclA was absent, but were not reduced in the absence of IgG, suggesting that BclA, but not IgG, is important in these processes. Taken together, these results support a model in which spores actively engage CCP primarily through BclA interaction with C1q, leading to CCP activation and opsonophagocytosis of spores in an IgG-independent manner. These findings are likely to have significant implications on B. anthracis pathogenesis and microbial manipulation of complement.  相似文献   
903.
904.
905.
We have examined the underlying mechanism of hepatitis C virus (HCV)-mediated IFITM1 regulation. IFITM1 is a potential target of miR-130a. Our results demonstrated that miR-130a expression was significantly higher in HCV-infected hepatocytes and liver biopsy specimens than in controls. Introduction of anti-miR-130a in hepatocytes increased IFITM1 expression. Hepatocytes stably expressing IFITM1 reduced HCV replication. Together, these results suggested that HCV infection of hepatocytes upregulates miR-130a and that use of anti-miR-130a may have potential for restriction of HCV replication.  相似文献   
906.
907.
908.
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries. It produces a characteristic intestinal histopathological lesion on enterocytes known as ‘attaching and effacing’ (A/E), and these two steps are mediated by a type-III secretory system. In the present study, we evaluated the effect on the initial host cell attachment step produced by bovine lactoferrin (bLF) and three synthetic peptides: lactoferricin (LFcin), lactoferrampin (LFampin) and LFchimera. A special focus was given to the hemolytic activity and EPEC-induced actin polymerization in HEp-2 cells, as well as to the espA gene expression, which produces the protein responsible for primary contact with the host cells. Results show that EPEC attachment to HEp-2 cells was significantly suppressed by bLF and LFchimera at 125 and 40 μM, respectively. EPEC-mediated actin polymerization was blocked by bLF and LFchimera at 88 and 99%, respectively. LFchimera inhibited the attachment and A/E lesion caused by EPEC in a dose-dependent manner. In the presence of 125 μM bLF, the expression level of the espA gene was decreased by 50% compared to the untreated control. LFchimera at concentrations of 20 μM and 40 μM diminished the level of espA gene expression 100 and 1000 fold, respectively (P < 0.001). Although bLF, LFchimera, LFcin, and LFampin all significantly blocked the hemolysis produced by EPEC (P < 0.001), the two former compounds produced this effect at lower concentrations. These two compounds, bLF and LFchimera, were able to inhibit the first steps of the mechanism of the damage used by EPEC. This data suggests that LFchimera could provide protection against enteropathogens that share this mechanism.  相似文献   
909.
Understanding the molecular basis of disease requires gene expression profiling of normal and pathological tissue. Although the advent of laser microdissection (LMD) has greatly facilitated the procurement of specific cell populations, often only small amounts of low quality RNA is recovered. This precludes the use of global approaches of gene expression profiling which require sizable amounts of high quality RNA. Here we report a method for processing of snap-frozen tissue to prepare large amounts of intact RNA using LMD.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号