首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7029篇
  免费   698篇
  7727篇
  2023年   45篇
  2022年   84篇
  2021年   142篇
  2020年   90篇
  2019年   106篇
  2018年   152篇
  2017年   113篇
  2016年   200篇
  2015年   306篇
  2014年   304篇
  2013年   420篇
  2012年   493篇
  2011年   451篇
  2010年   307篇
  2009年   276篇
  2008年   401篇
  2007年   390篇
  2006年   325篇
  2005年   295篇
  2004年   297篇
  2003年   268篇
  2002年   227篇
  2001年   140篇
  2000年   139篇
  1999年   125篇
  1998年   102篇
  1997年   71篇
  1996年   94篇
  1995年   78篇
  1994年   69篇
  1993年   46篇
  1992年   97篇
  1991年   87篇
  1990年   78篇
  1989年   66篇
  1988年   61篇
  1987年   40篇
  1986年   45篇
  1985年   65篇
  1984年   60篇
  1983年   43篇
  1982年   37篇
  1981年   27篇
  1980年   25篇
  1979年   40篇
  1978年   28篇
  1977年   41篇
  1973年   26篇
  1972年   33篇
  1971年   25篇
排序方式: 共有7727条查询结果,搜索用时 0 毫秒
211.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.  相似文献   
212.
213.
Sleep disorders, such as obstructive sleep apnoea (OSA) and restless legs syndrome (RLS), are very common. The relative importance of genetic and nongenetic (environmental) influences on the symptomatology of these conditions has not been well studied. This study uses the twin design to examine this by evaluating OSA and RLS symptoms in monozygotic (MZ) and dizygotic (DZ) twins. Six thousand six hundred unselected female twin pairs, identified from a national volunteer twin register, were asked to complete a medical questionnaire. This questionnaire included questions on OSA and RLS symptoms, as well as questions on subject demographics, past medical history, smoking history and menopausal status. Responses were obtained from 4503 individuals (68% response rate). A total of 1937 twin pairs were evaluable: 933 MZ pairs (mean [range] age 51 [20-76] years) and 1004 DZ pairs (age 51 [20-80] years). Concordance rates were higher for MZ than DZ twins for OSA and RLS symptoms. Multifactorial liability threshold modeling suggests that additive genetic effects combined with unique environmental factors provide the best model for OSA and RLS symptoms. Heritability was estimated to be 52% (95% confidence interval 36% to 68%) for disruptive snoring, 48% (37% to 58%) for daytime sleepiness, 54% (44% to 63%) for restless legs, and 60% (51% to 69%) for legs jerking. These estimates dropped only slightly after adjustment for potential confounding influences on the symptoms of snoring and daytime sleepiness. These results suggest a substantial genetic contribution to the symptomatology of OSA and RLS. More research is needed to identify the genes responsible, and may ultimately lead to new therapies.  相似文献   
214.
215.
Cytokines manifest their function through alteration of gene expression. However, target genes for signals from cytokine receptors are largely unknown. We therefore searched for immediate-early cytokine-responsive genes and isolated a novel gene, CIS (cytokine inducible SH2-containing protein) which is induced in hematopoietic cells by a subset of cytokines including interleukin 2 (IL2), IL3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin (EPO), but not by stem cell factor, granulocyte colony-stimulating factor and IL6. The CIS message encodes a polypeptide of 257 amino acids that contains an SH2 domain of 96 amino acids in the middle. To clarify the function of CIS in cytokine signal transduction, we expressed CIS in IL3-dependent hematopoietic cell lines under the control of a steroid-inducible promoter. The CIS product stably associated with the tyrosine-phosphorylated beta chain of the IL3 receptor as well as the tyrosine-phosphorylated EPO receptor. Forced expression of CIS by steroid reduced the growth rate of these transformants, suggesting a negative role of CIS in signal transduction. CIS induction requires the membrane-proximal region of the cytoplasmic domain of the EPO receptor as well as that of the common beta chain of the IL3, IL5 and GM-CSF receptor, whereas CIS binds to the receptor that is tyrosine phosphorylated by cytokine stimulation. Thus CIS appears to be a unique regulatory molecule for cytokine signal transduction.  相似文献   
216.
Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.  相似文献   
217.
Highly multiplexed single‐cell functional proteomics has emerged as one of the next‐generation toolkits for a deeper understanding of functional heterogeneity in cell. Different from the conventional population‐based bulk and single‐cell RNA‐Seq assays, the microchip‐based proteomics at the single‐cell resolution enables a unique identification of highly polyfunctional cell subsets that co‐secrete many proteins from live single cells and most importantly correlate with patient response to a therapy. The 32‐plex IsoCode chip technology has defined a polyfunctional strength index (PSI) of pre‐infusion anti‐CD19 chimeric antigen receptor (CAR)‐T products, that is significantly associated with patient response to the CAR‐T cell therapy. To complement the clinical relevance of the PSI, a comprehensive visualization toolkit of 3D uniform manifold approximation and projection (UMAP) and t‐distributed stochastic neighbor embedding (t‐SNE) in a proteomic analysis pipeline is developed, providing more advanced analytical algorithms for more intuitive data visualizations. The UMAP and t‐SNE of anti‐CD19 CAR‐T products reveal distinct cytokine profiles between nonresponders and responders and demonstrate a marked upregulation of antitumor‐associated cytokine signatures in CAR‐T cells from responding patients. Using this powerful while user‐friendly analytical tool, the multi‐dimensional single‐cell data can be dissected from complex immune responses and uncover underlying mechanisms, which can promote correlative biomarker discovery, improved bioprocessing, and personalized treatment development.  相似文献   
218.
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.  相似文献   
219.
A variety of intrinsic and extrinsic factors contribute to the altered efficiency of CTLs in elderly organisms. In particular, the efficacy of antiviral CD8+ T cells responses in the elderly has come back into focus since the COVID‐19 pandemic outbreak. However, the exact molecular mechanisms leading to alterations in T cell function and the origin of the observed impairments have not been fully explored. Therefore, we investigated whether intrinsic changes affect the cytotoxic ability of CD8+ T cells in aging. We focused on the different subpopulations and time‐resolved quantification of cytotoxicity during tumor cell elimination. We report a surprising result: Killing kinetics of CD8+ T cells from elderly mice are much faster than those of CD8+ T cells from adult mice. This is true not only in the total CD8+ T cell population but also for their effector (TEM) and central memory (TCM) T cell subpopulations. TIRF experiments reveal that CD8+ T cells from elderly mice possess comparable numbers of fusion events per cell, but significantly increased numbers of cells with granule fusion. Analysis of the cytotoxic granule (CG) content shows significantly increased perforin and granzyme levels and turns CD8+ T cells of elderly mice into very efficient killers. This highlights the importance of distinguishing between cell‐intrinsic alterations and microenvironmental changes in elderly individuals. Our results also stress the importance of analyzing the dynamics of CTL cytotoxicity against cancer cells because, with a simple endpoint lysis analysis, cytotoxic differences could have easily been overlooked.  相似文献   
220.
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号