首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4937篇
  免费   372篇
  5309篇
  2023年   38篇
  2022年   72篇
  2021年   122篇
  2020年   72篇
  2019年   85篇
  2018年   124篇
  2017年   90篇
  2016年   151篇
  2015年   258篇
  2014年   250篇
  2013年   348篇
  2012年   377篇
  2011年   341篇
  2010年   241篇
  2009年   217篇
  2008年   310篇
  2007年   317篇
  2006年   263篇
  2005年   225篇
  2004年   235篇
  2003年   214篇
  2002年   161篇
  2001年   44篇
  2000年   43篇
  1999年   49篇
  1998年   59篇
  1997年   31篇
  1996年   35篇
  1995年   35篇
  1994年   25篇
  1993年   22篇
  1992年   29篇
  1991年   25篇
  1990年   27篇
  1989年   22篇
  1988年   11篇
  1987年   12篇
  1986年   15篇
  1985年   28篇
  1984年   30篇
  1983年   19篇
  1982年   21篇
  1981年   19篇
  1979年   16篇
  1978年   11篇
  1977年   12篇
  1974年   12篇
  1973年   14篇
  1972年   15篇
  1971年   10篇
排序方式: 共有5309条查询结果,搜索用时 15 毫秒
41.
42.
43.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   
44.
Lysine vasopressin (LVP), arginine vasopressin, oxytocin, and arginine vasotocin administered intraventricularly (icv) to mice all provoked a dose-dependent behavioral response in the range 0.1 – 1.0 μg. This response included a pronounced hyperactivity, extensive foraging, increased grooming, and at higher doses, stereotyped scratching, squeaking, and occasional barrel rolling. The four hormones were all approximately equipotent. Desglycinamide lysine vasopressin and [desaminocys1, D-Arg8] vasopressin produced some of the characteristic behaviors, but were much less potent. While pretreatment of the animals with reserpine (5 mg/kg ip), haloperidol (0.5 mg/kg ip), or physostigmine (0.5 mg/kg ip) sedated the animals and attenuated the locomotion and grooming, these drugs did not substantially alter the characteristic behavioral responses to LVP. Pretreatment with α-methyl-p-tyrosine (400 mg/kg ip), p-chlorophenylalanine (320 mg/kg ip), 6-hydroxydopamine (100 μg icv), ergotamine (0.5 μg icv), ethoxolamide (52 ng icv), diphenhydramine (20 μg icv), prostaglondin F (2 μg icv), or naloxone (1 mg/kg ip) did not alter the LVP-induced behaviors. None of these drugs or -amphetamine (0.5 to 20 mg/kg ip) or nicotine (0.1 or 1 μg icv) mimicked the behavioral effects of the hormones.  相似文献   
45.
Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D-loop and T-loop of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base pairs to the Shine–Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element.  相似文献   
46.
Former studies have established that loss of heterozygosity can be a key driver of sequence evolution in unicellular eukaryotes and tissues of metazoans. However, little is known about whether the distribution of loss of heterozygosity events is largely random or forms discernible patterns across genomes. To initiate our experiments, we introduced selectable markers to both arms of all chromosomes of the budding yeast. Subsequent extensive assays, repeated over several genetic backgrounds and environments, provided a wealth of information on the genetic and environmental determinants of loss of heterozygosity. Three findings stand out. First, the number of loss of heterozygosity events per unit time was more than 25 times higher for growing than starving cells. Second, loss of heterozygosity was most frequent when regions of homology around a recombination site were identical, about a half-% sequence divergence was sufficient to reduce its incidence. Finally, the density of loss of heterozygosity events was highly dependent on the genome’s physical architecture. It was several-fold higher on short chromosomal arms than on long ones. Comparably large differences were seen within a single arm where regions close to a centromere were visibly less affected than regions close, though usually not strictly adjacent, to a telomere. We suggest that the observed uneven distribution of loss of heterozygosity events could have been caused not only by an uneven density of initial DNA damages. Location-depended differences in the mode of DNA repair, or its effect on fitness, were likely to operate as well.  相似文献   
47.
Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10–12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.Subject terms: Cancer metabolism, CNS cancer  相似文献   
48.
Sleep disorders, such as obstructive sleep apnoea (OSA) and restless legs syndrome (RLS), are very common. The relative importance of genetic and nongenetic (environmental) influences on the symptomatology of these conditions has not been well studied. This study uses the twin design to examine this by evaluating OSA and RLS symptoms in monozygotic (MZ) and dizygotic (DZ) twins. Six thousand six hundred unselected female twin pairs, identified from a national volunteer twin register, were asked to complete a medical questionnaire. This questionnaire included questions on OSA and RLS symptoms, as well as questions on subject demographics, past medical history, smoking history and menopausal status. Responses were obtained from 4503 individuals (68% response rate). A total of 1937 twin pairs were evaluable: 933 MZ pairs (mean [range] age 51 [20-76] years) and 1004 DZ pairs (age 51 [20-80] years). Concordance rates were higher for MZ than DZ twins for OSA and RLS symptoms. Multifactorial liability threshold modeling suggests that additive genetic effects combined with unique environmental factors provide the best model for OSA and RLS symptoms. Heritability was estimated to be 52% (95% confidence interval 36% to 68%) for disruptive snoring, 48% (37% to 58%) for daytime sleepiness, 54% (44% to 63%) for restless legs, and 60% (51% to 69%) for legs jerking. These estimates dropped only slightly after adjustment for potential confounding influences on the symptoms of snoring and daytime sleepiness. These results suggest a substantial genetic contribution to the symptomatology of OSA and RLS. More research is needed to identify the genes responsible, and may ultimately lead to new therapies.  相似文献   
49.
This paper reports the ways that the differences in leaf senescence are related to grain filling, grain yield, and the dynamics of cytokinins (CKs) in the top three leaves of four field-grown new plant type (NPT) rice, a tropical japonica developed at the International Rice Research Institute, Philippines, to increase the yield potential of rice. The chlorophyll content in leaves decreased from flowering to maturity in all the NPT lines, whereas the grain filling percentage was higher in the fast-senescing NPT line than in slow-senescing NPT line. Grain yield was positively correlated with senescence in the flag leaf. Rapid changes in the CK levels were recorded in the leaves of the fast-senescing line, whereas the CK levels were relatively stable in leaves of the slow-senescing line, suggesting that the dynamics of CKs in the fast-senescing line are vital for fast senescence. There were no significant changes in bioactive CKs, CK O-glucosides (storage CKs), and cis-zeatin derivatives in different leaves of the slow-senescing NPT line between 0 and 3 weeks after flowering, suggesting that the content of these CKs is relatively stable during grain filling. A progressive increase in levels of bioactive CKs was positively correlated with gradual accumulation of CK N-glucosides (inactive CKs) in the top three leaves of the slow-senescing NPT line, whereas the decrease of bioactive CKs in the flag leaf of the fast-senescing line was accompanied by accumulation of CK O-glucosides. These results suggest that there is a higher rate of biosynthesis and/or import of bioactive CKs as well as their turnover which may favor delay of leaf senescence in the slow-senescing NPT line.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号