首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   231篇
  2070篇
  2022年   18篇
  2021年   21篇
  2019年   20篇
  2018年   17篇
  2017年   16篇
  2016年   23篇
  2015年   49篇
  2014年   76篇
  2013年   79篇
  2012年   117篇
  2011年   89篇
  2010年   78篇
  2009年   52篇
  2008年   77篇
  2007年   79篇
  2006年   80篇
  2005年   83篇
  2004年   67篇
  2003年   67篇
  2002年   69篇
  2001年   60篇
  2000年   79篇
  1999年   49篇
  1998年   35篇
  1997年   23篇
  1996年   33篇
  1995年   27篇
  1994年   27篇
  1993年   36篇
  1992年   42篇
  1991年   40篇
  1990年   36篇
  1989年   28篇
  1988年   37篇
  1987年   20篇
  1986年   28篇
  1985年   25篇
  1984年   25篇
  1983年   15篇
  1980年   10篇
  1979年   12篇
  1978年   15篇
  1977年   13篇
  1974年   13篇
  1973年   14篇
  1972年   16篇
  1970年   11篇
  1968年   12篇
  1967年   12篇
  1966年   11篇
排序方式: 共有2070条查询结果,搜索用时 15 毫秒
91.
High-throughput sequencing technologies are widely used to analyse genomic variants or rare mutational events in different fields of genomic research, with a fast development of new or adapted platforms and technologies, enabling amplicon-based analysis of single target genes or even whole genome sequencing within a short period of time. Each sequencing platform is characterized by well-defined types of errors, resulting from different steps in the sequencing workflow. Here we describe a universal method to prepare amplicon libraries that can be used for sequencing on different high-throughput sequencing platforms. We have sequenced distinct exons of the CREB binding protein (CREBBP) gene and analysed the output resulting from three major deep-sequencing platforms. platform-specific errors were adjusted according to the result of sequence analysis from the remaining platforms. Additionally, bioinformatic methods are described to determine platform dependent errors. Summarizing the results we present a platform-independent cost-efficient and timesaving method that can be used as an alternative to commercially available sample-preparation kits.  相似文献   
92.
The mechanisms of the impairment in hepatic glucose metabolism induced by free fatty acids (FFAs) and the importance of FFA oxidation in these mechanisms remain unclear. FFA-induced peripheral insulin resistance has been linked to membrane translocation of novel protein kinase C (PKC) isoforms, but the role of PKC in hepatic insulin resistance has not been assessed. To investigate the biochemical pathways that are induced by FFA in the liver and their relation to glucose metabolism in vivo, we determined endogenous glucose production (EGP), the hepatic content of citrate (product of acetyl-CoA derived from FFA oxidation and oxaloacetate), and hepatic PKC isoform translocation after 2 and 7 h Intralipid + heparin (IH) or SAL in rats. Experiments were performed in the basal state and during hyperinsulinemic clamps (insulin infusion rate, 5 mU. kg(-1). min(-1)). IH increased EGP in the basal state (P < 0.001) and during hyperinsulinemia (P < 0.001) at 2 and 7 h. Also, 7-h infusion of IH induced resistance to the suppressive effect of insulin on EGP (P < 0.05). Glycerol infusion (resulting in plasma glycerol levels similar to IH infusion) did not have any effect on EGP. IH increased hepatic citrate content by twofold, independent of the insulin levels and the duration of IH infusion. IH induced hepatic PKC-delta translocation from the cytosolic to membrane fraction in all groups. PKC-delta translocation was greater at 7 compared with 2 h (P < 0.05). In conclusion, 1) increased FFA oxidation may contribute to the FFA-induced increase in EGP in the basal state and during hyperinsulinemia but is not associated with FFA-induced hepatic insulin resistance, and 2) the progressive insulin resistance induced by FFA in the liver is associated with a progressive increase in hepatic PKC-delta translocation.  相似文献   
93.
Inherited deficiency of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme of leucine degradation, is an organic acidemia detectable by expanded newborn screening with a variable phenotype that ranges from asymptomatic to death in infancy. Here, we show that the two subunits of the enzyme (MCCalpha; MCCbeta) are imported into the mitochondrial matrix by the classical pathway involving cleavable amino-terminal targeting presequences. We identified the cleavage sites (Tyr41/Thr42 and Ala22/Tyr23 for MCCalpha and MCCbeta, respectively) of the targeting signals and the amino-termini of the mature polypeptides of MCC and propionyl-CoA carboxylase, a mitochondrial paralog. The amino-termini containing 39 (MCCalpha) or 20 amino acids (MCCbeta) were both necessary and sufficient for targeting. Structural requirements for mitochondrial import were defined by site-directed mutagenesis. Our studies provide the prerequisite to understand the impact of specific mutations on the clinical phenotype of MCC deficiency.  相似文献   
94.
Glycoprotein IV (gIV) of bovine herpesvirus 1 (BHV-1), a homolog of herpes simplex virus glycoprotein D, represents a major component of the viral envelope and a dominant immunogen. To analyze the functional role of gIV during BHV-1 replication, cell line BUIV3-7, which constitutively expresses gIV, was constructed and used for the isolation of gIV- BHV-1 mutant 80-221, in which the gIV gene was replaced by a lacZ expression cassette. On complementing gIV-expressing cells, the gIV- BHV-1 replicated normally but was unable to form plaques and infectious progeny on noncomplementing cells. Further analysis showed that gIV is essential for BHV-1 entry into target cells, whereas viral gene expression, DNA replication, and envelopment appear unchanged in both noncomplementing and complementing cells infected with phenotypically complemented gIV- BHV-1. The block in entry could be overcome by polyethylene glycol-induced membrane fusion. After passaging of gIV- BHV-1 on complementing cells, a rescued variant, BHV-1res, was isolated and shown to underexpress gIV in comparison with its wild-type parent. Comparison of the penetration kinetics of BHV-1 wild type, phenotypically complemented gIV- BHV-1, and BHV-1res indicated that penetration efficiency correlated with the amount of gIV present in virus particles. In conclusion, we show that gIV of BHV-1 is an essential component of the virion involved in virus entry and that the amount of gIV in the viral envelope modulates the penetration efficiency of the virus.  相似文献   
95.
Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].  相似文献   
96.
In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression.  相似文献   
97.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
98.
Aquatic Ecology - The invasive crayfish Faxonius immunis is regarded as a threat to amphibians and macroinvertebrates in the Upper Rhine Valley, Germany, eradicating macrophytes and establishing...  相似文献   
99.
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.  相似文献   
100.
Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochondria. It contains a C-terminal ribosome-binding domain that physically interacts with mitochondrial ribosomes to facilitate the co-translational insertion of nascent membrane proteins. The molecular function of Cox18/Oxa2 is not well understood. Employing a functional complementation approach with mitochondria-targeted versions of YidC we show that YidC is able to functionally replace both Oxa1 and Cox18/Oxa2. However, to integrate mitochondrial translation products into the inner membrane of mitochondria, the ribosome-binding domain of Oxa1 has to be appended onto YidC. On the contrary, the fusion of the ribosome-binding domain onto YidC prevents its ability to complement COX18 mutants suggesting an indispensable post-translational activity of Cox18/Oxa2. Our observations suggest that during evolution of mitochondria from their bacterial ancestors the two descendents of YidC functionally segregated to perform two distinct activities, one co-translational and one post-translational.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号