首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有50条查询结果,搜索用时 109 毫秒
11.
Data obtainedduring the last two decades show that spontaneously hypertensive rats,an acceptable experimental model of primary human hypertension, possessincreased activity of both ubiquitous and renal cell-specific isoformsof theNa+/H+exchanger (NHE) andNa+-K+-2Clcotransporter. Abnormalities of these ion transporters have been foundin patients suffering from essential hypertension. Recent geneticstudies demonstrate that genes encoding the - and -subunits ofENaC, a renal cell-specific isoform of theNa+-K+-2Clcotransporter, and 3-, 1-, and 2-subunits of theNa+-K+pump are localized within quantitative trait loci (QTL) for elevated blood pressure as well as for enhanced heart-to-body weight ratio, proteinuria, phosphate excretion, and stroke latency. On the basis ofthe homology of genome maps, several other genes encoding these transporters, as well as theNa+/H+exchanger andNa+-K+-2Clcotransporter, can be predicted in QTL related to the pathogenesis ofhypertension. However, despite their location within QTL, analysis ofcDNA structure did not reveal any mutation in the coding region of theabove-listed transporters in primary hypertension, with the exceptionof G276L substitution in the1-Na+-K+pump from Dahl salt-sensitive rats and a higher occurrence of T594Mmutation of -ENaC in the black population with essential hypertension. These results suggest that, in contrast to Mendelian forms of hypertension, the altered activity of monovalent ion transporters in primary hypertension is caused by abnormalities ofsystems involved in the regulation of their expression and/or function.Further analysis of QTL in F2hybrids of normotensive and hypertensive rats and in affected siblingpairs will allow mapping of genes causing abnormalities ofthese regulatory pathways.  相似文献   
12.
K-Cl cotransport, theelectroneutral-coupled movement of K and Cl ions, plays an importantrole in regulatory volume decrease. We recently reported that nitrite,a nitric oxide derivative possessing potent vasodilation properties,stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs).We hypothesized that activation of vascular smooth muscle (VSM) K-Clcotransport by vasodilators decreases VSM tension. Here we tested thishypothesis by comparing the effects of commonly used vasodilators,hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, andpentaerythritol, on K-Cl cotransport in LK SRBCs and in primarycultures of rat VSM cells (VSMCs) and of HYZ-induced K-Clcotransport activation on relaxation of isolated porcine coronaryrings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rbinflux in the presence and absence of inhibitors for other K/Rbtransport pathways. All vasodilators activated K-Cl cotransport in LKSRBCs and HYZ in VSMCs, and this activation was inhibited by calyculinand genistein, two inhibitors of K-Cl cotransport. KT-5823, a specificinhibitor of protein kinase G, abolished the sodiumnitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggestinginvolvement of the cGMP pathway in K-Cl cotransport activation.Hydralazine, in a dose-dependent manner, and sodium nitroprussiderelaxed (independently of the endothelium) precontractedarteries when only K-Cl cotransport was operating and other pathwaysfor K/Rb transport, including the Ca-activated K channel, wereinhibited. Our findings suggest that K-Cl cotransport may be involvedin vasodilation.

  相似文献   
13.
14.
15.
16.
Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.  相似文献   
17.
Red blood cells (RBCs) from different mammalian species were investigated for the presence of diamide-induced oxidative activation of K-Cl cotransport reported to be present in sheep but absent in human RBCs. K efflux was measured in RBCs from human with hemoglobin (Hb) A or S, glucose-phosphate dehydrogenase (G6PDH) and a cytoskeletal deficiency, and from rat, mouse and rabbit. RBCs were incubated with diamide (0–1.0 mm) in K-free Cl or NO3 media of variable osmolalities (200–450 mOsM). Cl-dependent K efflux or K-Cl cotransport (estimated as the difference between K efflux rate constants in Cl and NO3) was activated by diamide in a sigmoidal fashion. Relative maximum K-Cl cotransport followed the sequence: human HbA (1) < rabbit (1.8) < sheep (6.9) < human HbS (9.5) ∼ rat (9.7). Relative diamide concentrations for half maximal activation of K-Cl cotransport followed the sequence: sheep (1.9) > human Hb A (1) > rabbit (0.75) > human HbS and rat (0.67). Cell swelling in 200 mOsM doubled K-Cl cotransport in diamide, both in human HbA and S cells but reduced that in rat RBCs. In contrast, cell shrinkage at 450 mOsM obliterated K-Cl cotransport in human HbA and S but not in rat RBCs. Human RBCs with G6PDH and a cytoskeleton deficiency behaved like HbA RBCs. In mouse RBCs, diamide-activated K-Cl cotransport was 30% higher in isotonic than in hypotonic medium. In human HbA and S, and in low or high K sheep RBCs fractionated by Percoll density gradient, diamide increased the activity of K-Cl cotransport, an effect inversely correlated with cell density. Analysis of pooled data reveals that K-Cl cotransport accounted for about 80% of all K flux in Cl. There was a statistically significant correlation between K-Cl cotransport and K efflux in Cl (P < 0.00001) and in NO3 (P < 0.00001). In conclusion, a diamide-activated K-Cl cotransport was present in human RBCs and in all other mammalian RBCs tested, with a large inter-, and for human and sheep, intraspecies variability for its maximum activity. Received: 5 June 1996/Revised: 4 October 1996  相似文献   
18.
Sheep K-Cl cotransporter-1(shKCC1) cDNA was cloned from kidney by RT-PCR with an open reading frame of 3258 base pairs exhibiting 92%, 90%, 88% and 87% identity with pig, rabbit and human, rat and mouse KCC1 cDNAs, respectively, encoding an approximately 122 kDa polypeptide of 1086-amino acids. Hydropathy analysis reveals the familiar KCC1 topology with 12 transmembrane domains (TMDs) and the hydrophilic NH2-terminal (NTD) and COOH-terminal (CTD) domains both at the cytoplasmic membrane face. However, shKCC1 has two rather than one large extracellular loops (ECL): ECL3 between TMDs 5 and 6, and ECL6, between TMDs 11 and 12. The translated shKCC1 protein differs in 12 amino acid residues from other KCC1s, mainly within the NTD, ECL3, ICL4, ECL6, and CTD. Notably, a tyrosine residue at position 996 replaces aspartic acid conserved in all other species. Human embryonic kidney (HEK293) cells and mouse NIH/3T3 fibroblasts, transiently transfected with shKCCI-cDNA, revealed the glycosylated approximately 150 kDa proteins by Western blots and positive immunofluorescence-staining with polyclonal rabbit anti-ratKCC1 antibodies. ShKCC1 was functionally expressed in NIH/3T3 cells by an elevated basal Cl-dependent K influx measured with Rb as K-congener that was stimulated three-fold by the KCC-activator N-ethylmaleimide.  相似文献   
19.
Red blood cells (RBCs) possess the K-Cl cotransport (KCC) isoforms 1, 3, and 4. Mutations within a given isoform may affect overall KCC activity. In a double-blind study, we analyzed, with Rb as a K congener, K fluxes (total flux, ouabain-sensitive Na+/K+ pump, and bumetanide-sensitive Na-K-2Cl cotransport, Cl-dependent, and ouabain- and bumetanide-insensitive KCC with or without stimulation by N-ethylmaleimide (NEM) and staurosporine or Mg removal, and basal channel-mediated fluxes, osmotic fragility, and ions and water in the RBCs of 8 controls, and of 8 patients with hereditary motor and sensory neuropathy with agenesis of corpus callosum (HMSN-ACC) with defined KCC3 mutations (813FsX813 and Phe529FsX532) involving the truncations of 338 and 619 C-terminal amino acids, respectively. Water and ion content and, with one exception, mean osmotic fragility, as well as K fluxes without stimulating agents, were similar in controls and HMSN-ACC RBCs. However, the NEM-stimulated KCC was reduced 5-fold (p < 0.0005) in HMSN-ACC vs control RBCs, as a result of a lower Vmax (p < 0.05) rather than a lower Km (p = 0.109), accompanied by corresponding differences in Cl activation. Low intracellular Mg activated KCC in 6 out of 7 controls vs 1 out of 6 HMSN-ACC RBCs, suggesting that regulation is compromised. The lack of differences in staurosporine-activated KCC indicates different action mechanisms. Thus, in HMSN-ACC patients with KCC3 mutants, RBC KCC activity, although indistinguishable from that of the control group, responded differently to biochemical stressors, such as thiol alkylation or Mg removal, thereby indirectly indicating an important contribution of KCC3 to overall KCC function and regulation.  相似文献   
20.
Summary Ouabain-resistant effluxes from pretreated cells containing K+/Na+=1.5 into K+ and Na+ free media were measured.Furosemide-sensitive cation effluxes from cells with nearly normal membrane potential and pH were lower in NO 3 media than in Cl media; they were reduced when pH was lowered in Cl media. When the membrane potential was positive inside furosemide increased the effluxes of Na+ and K+ (7 experiments). With inside-positive membrane potential thefurosemideinsensitive effluxes were markedly increased, they decreased with decreasing pH at constant internal Cl and also when internal Cl was reduced at constant pH. The correlation between cation flux and the membrane potential was different for cells with high or low internal chloride concentrations. The data with chloride47mm showed a better fit with the single-barrier model than with the infinite number-of-barriers model. With low chloride no significant correlation between flux and membrane potential was found. The data are not compatible with pure independent diffusion of Na+ and K+ in the presence of ouabain and furosemide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号