首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   32篇
  2024年   1篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   19篇
  2019年   17篇
  2018年   24篇
  2017年   17篇
  2016年   29篇
  2015年   28篇
  2014年   45篇
  2013年   39篇
  2012年   42篇
  2011年   34篇
  2010年   19篇
  2009年   18篇
  2008年   27篇
  2007年   18篇
  2006年   18篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1974年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有481条查询结果,搜索用时 31 毫秒
231.
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory cytokine. Tumor necrosis factor-alpha was evaluated in the serum samples of patients with idiopathic retinal periphlebitis in young adults (Eales’ disease). Retinal periphlebitis was graded according to a new grading system based on severity of inflammation (grade 1–4). Quantification of the TNF-α levels was carried out using ELISA kit in the serum samples of young adults with idiopathic retinal periphlebitis (n = 17) and healthy controls (n = 17) of similar age. Tumor necrosis factor-α level was found to be significantly raised in cases with retinal periphlebitis as compared with controls (p < 0.001). Higher levels of TNF-α were found to be associated with increased severity of retinal periphlebitis. Tumor necrosis factor-α represents a novel target for controlling inflammatory activity in idiopathic retinal periphlebitis. Higher levels of TNF-α, in association with the increased severity of retinal periphlebitis, have implications for early anti-TNF-α therapy.  相似文献   
232.
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.  相似文献   
233.
234.
Wild animals, unlike their laboratory counterparts, live amidst an abundance of pathogens and parasites. The presence of such immune stimulation from the time of birth likely has a profound effect on the development and stasis of the immune system. To probe potential differences between the immune systems of wild and laboratory animals, the response to mitogen (Con A) of splenocytes from wild rats was evaluated in vitro and compared with results from lab-rat-derived splenocytes. Although the response to mitogen is ubiquitous in splenocytes from laboratory animals regardless of strain or even species, splenocytes derived from wild rats were unresponsive to mitogen as judged by upregulation of activation markers and proliferation. Further, splenocytes from wild rats produced almost 10-fold less IL-2 and TNF-alpha in response to mitogen than did splenocytes from laboratory rats. In addition, mitogen stimulation resulted in an almost 100-fold greater production of IL-4 in wild-rat-derived splenocytes than in lab-rat-derived splenocytes. Perhaps surprisingly, these differences were observed in the absence of differences between wild and laboratory animals in the ratio of CD4+/CD8+ T cells or in the relative numbers of T cells, B cells and monocytes in the splenocyte population. These observations may have substantial implications for the hygiene hypothesis and provide considerable insight into the roles played by the environment during immune system development and modulation.  相似文献   
235.
We built a novel web-based platform for performing discrete molecular dynamics simulations of proteins. In silico protein folding involves searching for minimal frustration in the vast conformational landscape. Conventional approaches for simulating protein folding insufficiently address the problem of simulations in relevant time and length scales necessary for a mechanistic understanding of underlying biomolecular phenomena. Discrete molecular dynamics (DMD) offers an opportunity to bridge the size and timescale gaps and uncover the structural and biological properties of experimentally undetectable protein dynamics. The iFold server supports large-scale simulations of protein folding, thermal denaturation, thermodynamic scan, simulated annealing and p(fold) analysis using DMD and coarse-grained protein model with structure-based Gō-interactions between amino acids. AVAILABILITY: http://ifold.dokhlab.org  相似文献   
236.
A model has been developed to describe the interaction between two enzymes and an intermediary redox mediator. In this bi-enzymatic process, the enzyme cellobiose dehydrogenase oxidizes lactose at the C-1 position of the reducing sugar moiety to lactobionolactone, which spontaneously hydrolyzes to lactobionic acid. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt is used as electron acceptor and is continuously regenerated by laccase. Oxygen is the terminal electron acceptor and is fully reduced to water by laccase, a copper-containing oxidase. Oxygen is added to the system by means of bubble-free oxygenation. Using the model, the productivity of the process is investigated by simultaneous solution of the rate equations for varying enzyme quantities and redox mediator concentrations, solved with the aid of a numerical solution. The isocharts developed in this work provide an easy-to-use graphical tool to determine optimal process conditions. The model allows the optimization of the employed activities of the two enzymes and the redox mediator concentration for a given overall oxygen mass transfer coefficient by using the isocharts. Model predictions are well in agreement with the experimental data.  相似文献   
237.
Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.  相似文献   
238.
We synthesized and characterized a series of zwitterionic, acetate-terminated, quaternized amine diacyl lipids (AQ). These lipids have an inverted headgroup orientation as compared to naturally occurring phosphatidylcholine (PC) lipids; the cationic group is anchored at the membrane interface, while the anionic group extends into the aqueous phase. AQ lipids preferentially interact with highly polarizable anions (ClO(4)(-)) over less polarizable ions (Cl(-)), in accord with the Hofmeister series, as measured by the change in zeta potential of AQ liposomes. Conversely, AQ lipids have a weaker association with calcium than do PC lipids. The transition temperatures (Tm) of the AQ lipids are similar to the Tm observed with phosphatidylethanolamine (PE) lipids of the same chain length. AQ lipids form large lipid sheets after heating and sonication; however, in the presence of cholesterol (Chol), these lipids form stable liposomes that encapsulate carboxyfluorescein. The AQ:Chol liposomes retain their contents in the presence of serum at 37°C, and when injected intravenously into mice, their organ biodistribution is similar to that observed with PC:Chol liposomes. AQ lipids demonstrate that modulating the headgroup charge orientation significantly alters the biophysical properties of liposomes. For the drug carrier field, these new materials provide a non-phosphate containing zwitterlipid for the production of lipid vesicles.  相似文献   
239.
Present communication deals with the docking study of hybrid phenyl thiazolyl-1,3,5-triazine analogues (1a-36d) on three selected different binding site viz., α, β and γ of wild type Pf-DFHR-TS. In admiration of excellent H-bond scoring, with regard to cycloguanil and to a large extent similar scoring with WR99210, compound 4a, 12b, 21c, 23c, 28d, 29d, 34d, and 35d were selected for in vitro antimalarial activity against 3D7 strain of Plasmodium falciparum. Findings from the study disclose that a significant correlation was exist between in vitro results and in silico prediction (r(2)=0.543). Furthermore, investigation of structure-activity relationships elucidate crucial structural requirement for site specific binding of ligands.  相似文献   
240.
Hedychenone, a plant-derived labdane diterpenoid, showed potent in vitro cytotoxic activity against cancerous cells. In the present study, a series of analogues have been synthesized by modification of the furanoid ring, double bond and the vinylic methyl functionality of this natural product lead and evaluated for their cytotoxic activities against human cancer cell lines. The structures of the target compounds were established by IR, 1H NMR and mass spectral analysis. Majority of the analogues displayed potent activity than the parent compound, hedychenone. Preliminary structure–activity relationship studies indicated that furanoid ring has a greater impact on cytotoxicity than that of the decalone nucleus. However, dimerization through C-8 significantly enhanced the cytotoxic activity of the hedychenone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号