首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   60篇
  2023年   5篇
  2022年   15篇
  2021年   25篇
  2020年   20篇
  2019年   18篇
  2018年   29篇
  2017年   19篇
  2016年   35篇
  2015年   34篇
  2014年   60篇
  2013年   61篇
  2012年   52篇
  2011年   49篇
  2010年   26篇
  2009年   35篇
  2008年   41篇
  2007年   28篇
  2006年   37篇
  2005年   31篇
  2004年   26篇
  2003年   20篇
  2002年   22篇
  2001年   15篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1980年   4篇
  1979年   9篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有834条查询结果,搜索用时 156 毫秒
31.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons leading to paralysis and death between 3–5?years of diagnosis. Through whole genome association studies, several single nucleotide polymorphisms (SNPs) encoding missense mutations in angiogenin (ANG) protein have been identified as one of the primary factors causing ALS. Structural studies of ANG show that catalytic triad comprising His13, Lys40, and His114 residues imparts ribonucleolytic activity while nuclear localization signal residues 31RRR33 are responsible for nuclear translocation activity. Loss of either ribonucleolytic activity or nuclear translocation activity or both of these functions due to mutations cause ALS. However, the mechanisms of loss-of-functions of ANG mutants are not completely understood. Here, we present a cohesive and comprehensive picture of functional loss mechanisms of all known ALS-associated ANG mutants by extensive molecular dynamics (MD) simulations (Padhi, Kumar, Vasaikar, Jayaram, & Gomes, 2012 Padhi, A. K., Kumar, H., Vasaikar, S. V., Jayaram, B. and Gomes, J. 2012. Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One, 7(2): e32479[PubMed] [Google Scholar]; AK, 2013 Padhi, A.K., Jayaram, B., & Gomes, J. (accepted for publication). Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Scientific Reports (NPG).  [Google Scholar]). Our studies show that conformational switching of catalytic residue His114 is responsible for the loss of ribonucleolytic activity while reduction in solvent-accessible surface area (SASA) of 31RRR33 as a result of local folding is responsible for the loss of nuclear translocation activity (Padhi et al., 2012 Padhi, A. K., Kumar, H., Vasaikar, S. V., Jayaram, B. and Gomes, J. 2012. Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One, 7(2): e32479[PubMed] [Google Scholar]; AK, 2013 Padhi, A.K., Jayaram, B., & Gomes, J. (accepted for publication). Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Scientific Reports (NPG).  [Google Scholar]). Our prediction of loss-of-functions of 17 ANG mutants correlated positively with the reported experimental results. We have subsequently developed a fast molecular dynamics method based on certain global attributes / dynamic markers that can be used to determine whether a mutation is deleterious or benign. To make our method accessible to researchers and clinicians, we created a web server-based tool, ANGDelMut, freely available at http://bioschool.iitd.ernet.in/research.htm, where a user can submit new mutations to ascertain whether they cause ALS. We hope that our method will benefit the community at large and will pave the way for the development of a successful therapy for patients suffering from ALS.  相似文献   
32.
During chemolithoautotrophic thiosulfate oxidation, the phylogenetically diverged proteobacteria Paracoccus pantotrophus, Tetrathiobacter kashmirensis, and Thiomicrospira crunogena rendered steady enrichment of 34S in the end product sulfate, with overall fractionation ranging between −4.6‰ and +5.8‰. The fractionation kinetics of T. crunogena was essentially similar to that of P. pantotrophus, albeit the former had a slightly higher magnitude and rate of 34S enrichment. In the case of T. kashmirensis, the only significant departure of its fractionation curve from that of P. pantotrophus was observed during the first 36 h of thiosulfate-dependent growth, in the course of which tetrathionate intermediate formation is completed and sulfate production starts. The almost-identical 34S enrichment rates observed during the peak sulfate-producing stage of all three processes indicated the potential involvement of identical S-S bond-breaking enzymes. Concurrent proteomic analyses detected the hydrolase SoxB (which is known to cleave terminal sulfone groups from SoxYZ-bound cysteine S-thiosulfonates, as well as cysteine S-sulfonates, in P. pantotrophus) in the actively sulfate-producing cells of all three species. The inducible expression of soxB during tetrathionate oxidation, as well as the second leg of thiosulfate oxidation, by T. kashmirensis is significant because the current Sox pathway does not accommodate tetrathionate as one of its substrates. Notably, however, no other Sox protein except SoxB could be detected upon matrix-assisted laser desorption ionization mass spectrometry analysis of all such T. kashmirensis proteins as appeared to be thiosulfate inducible in 2-dimensional gel electrophoresis. Instead, several other redox proteins were found to be at least 2-fold overexpressed during thiosulfate- or tetrathionate-dependent growth, thereby indicating that there is more to tetrathionate oxidation than SoxB alone.  相似文献   
33.
We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene-graphene oxide (fG-GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG-GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes.  相似文献   
34.
35.
Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging.  相似文献   
36.
37.
38.
Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system.  相似文献   
39.
40.
In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling—C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号