首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   29篇
  374篇
  2024年   1篇
  2023年   5篇
  2022年   9篇
  2021年   22篇
  2020年   12篇
  2019年   9篇
  2018年   19篇
  2017年   12篇
  2016年   18篇
  2015年   25篇
  2014年   18篇
  2013年   30篇
  2012年   26篇
  2011年   32篇
  2010年   13篇
  2009年   13篇
  2008年   18篇
  2007年   19篇
  2006年   13篇
  2005年   13篇
  2004年   6篇
  2003年   13篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1991年   4篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
61.
62.
A novel ACO algorithm for optimization via reinforcement and initial bias   总被引:1,自引:0,他引:1  
In this paper, we introduce the MAF-ACO algorithm, which emulates the foraging behavior of ants found in nature. In addition to the usual pheromone model present in ACO algorithms, we introduce an incremental learning component. We view the components of the MAF-ACO algorithm as stochastic approximation algorithms and use the ordinary differential equation (o.d.e.) method to analyze their convergence. We examine how the local stigmergic interaction of the individual ants results in an emergent dynamic programming framework. The MAF-ACO algorithm is also applied to the multi-stage shortest path problem and the traveling salesman problem. Research of Prof. V.S. Borkar was supported in part by grant no. III.5(157)/99-ET and a J.C. Bose Fellowship from the Department of Science and Technology, Government of India.  相似文献   
63.
The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA‐dependent DEAD‐box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6)‐bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure‐function analysis in S. cerevisiae and human (h) cells, and find that the high‐affinity Nup42‐Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy‐terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1‐Dbp5/hDDX19B interaction site. A nup42‐CTD/gle1‐CTD/Dbp5 trimeric complex forms in the presence of IP6. Deletion of NUP42 abrogates Gle1‐Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42‐CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42‐hGle1B interaction.   相似文献   
64.
? Recent studies have demonstrated sibling vs stranger differences in group root allocation in plants, suggesting that plants have the potential for kin discrimination in competition. However, morphology differences could potentially be generated by competition-based mechanisms. Here, we tested these hypotheses for the sibling vs stranger differences in root allocation in Cakile edentula. ? Seeds were planted in pairs of either kin (siblings) or strangers, from all combinations of eight families, to give eight kin (sibling) and 28 stranger pair identities. Because the species has a seed dimorphism, the 10 replicates of each pair identity included both seed types. Root allocation, size inequality between seedlings in a pair, and competitive ability were derived from measures of biomass and height. ? Cakile edentula seedlings demonstrated the same kin recognition response previously observed in juvenile plants, with lower root allocation in kin pairs than stranger pairs. The seed dimorphism was not associated with root allocation. ? The two competitive mechanisms, genetic differences in competitive ability and increased size inequality in stranger groups, did not explain the root allocation differences in these seedlings. Kin recognition offered the most probable explanation for the differences in root allocation between sibling and stranger pairs.  相似文献   
65.
Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression. Chromatin immunoprecipitation studies revealed that IL-2 induced STAT5 binding to specific sites in the C-MAF promoter. These sites corresponded to regions enriched for markers of chromatin architectural features in both resting CD4 and differentiated Th2 cells. Unlike IL-6, IL-2 induced C-MAF expression in CD4 T cells with or without prior TCR stimulation. TCR-induced C-MAF expression was significantly inhibited by treatment with daclizumab or a JAK3 inhibitor, R333. Furthermore, IL-2 and IL-6 synergistically induced C-MAF expression in TCR-activated T cells, suggesting functional cooperation between these cytokines. Finally, both TCR-induced early IL4 mRNA expression and IL-4 cytokine expression in differentiated Th2 cells were significantly inhibited by IL-2R blockade. Thus, our findings demonstrate the importance of IL-2 in Th2 differentiation in human T cells and support the notion that IL-2R-directed therapies may have utility in the treatment of allergic disorders.  相似文献   
66.
The unfolded protein response (UPR) activates Ire1, an endoplasmic reticulum (ER) resident transmembrane kinase and ribonuclease (RNase), in response to ER stress. We used an in vivo assay, in which disappearance of the UPR-induced spliced HAC1 messenger ribonucleic acid (mRNA) correlates with the recovery of the ER protein-folding capacity, to investigate the attenuation of the UPR in yeast. We find that, once activated, spliced HAC1 mRNA is sustained in cells expressing Ire1 carrying phosphomimetic mutations within the kinase activation loop, suggesting that dephosphorylation of Ire1 is an important step in RNase deactivation. Additionally, spliced HAC1 mRNA is also sustained after UPR induction in cells expressing Ire1 with mutations in the conserved DFG kinase motif (D828A) or a conserved residue (F842) within the activation loop. The importance of proper Ire1 RNase attenuation is demonstrated by the inability of cells expressing Ire1-D828A to grow under ER stress. We propose that the activity of the Ire1 kinase domain plays a role in attenuating its RNase activity when ER function is recovered.  相似文献   
67.
A strain of Fusarium moniliforme isolated from a tropical mangrove ecosystem near Mumbai, India and deposited in the National Collection of Industrial Microorganisms (NCIM) as F. moniliforme NCIM 1276. The organism produced a single extracellular polygalacturonase (PG I) [EC 3.2.1.15] at pH 5 and a single pectate lyase (PL) [EC 4.2.2.2] at pH 8 in liquid medium containing 1% citrus pectin. Growth on semi-solid medium containing wheat bran and orange pulp resulted in a three-fold increase in PG production and a two-fold increase in PL production in comparison with that in liquid medium. The increased production of PG on semi-solid media, as compared to production in liquid media was investigated. The increased production of PG was partly due to the expression of a second polygalacturonase (PG II) isoenzyme by the fungus which was biochemically different from the one produced in liquid medium. The second PG II was a 30.6kDa enzyme, had an alkaline pI of 8.6, the Km was 0.166mg ml(-1), Vmax 13.33 micromol min(-1) mg(-1) and the kcat was 403 min(-1). It had a specific activity of 18.66U mg(-1). The differences between the PGs (PG I and PG II) suggest that the two enzymes are the products of different genes. The fungus also produced the same two PGs when it infected Lycopersicon esculentum (tomato). Only one PL was produced irrespective of growth conditions.  相似文献   
68.
We hypothesize that various growth factors and their receptors gene and protein are modulated in dorsal and ventral lobes of aging prostate. To test this hypothesis, TGFbeta1, TGFbeta2 TGFbeta3, TGFbetaR-I, TGFbetaR-II, TGFalpha, EGF, EGFR, KGF and KGFR gene and protein expression were analyzed in dorsal and ventral lobes of aging rat prostates (1, 3, 6, 9, 12, 18, 24, and 28/30 months). KGF gene expression was very weak or absent in 1, 3, and 6 month old rat dorsal and ventral lobes of prostate whereas it re-expressed in 9, 12, 18, 24 and 30 month old rat prostate. All growth factors and their receptors expect KGF and EGFR were mainly localized in epithelium of ventral and dorsal lobes of aging rat prostates. EGF, TGFalpha, TGFbeta1, and TGFbetaR-I protein expression was lacking in stroma of dorsal and ventral lobes of 1, 3, 6, 9, 12/18 months old rat prostates. However, EGF, TGFbeta1 and TGFbetaR-I proteins re-expressed in stroma of 24 and 28 months old rat prostates. KGF protein expression was lacking in epithelium of dorsal and ventral lobes of all aging rat prostates. This is the first report to demonstrate differential gene and protein expression of growth factors in dorsal and ventral lobes is associated with aging rat prostate, suggesting their role in pathogenesis of prostatic diseases with aging.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号