首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   29篇
  2023年   5篇
  2022年   8篇
  2021年   22篇
  2020年   12篇
  2019年   9篇
  2018年   19篇
  2017年   12篇
  2016年   18篇
  2015年   25篇
  2014年   18篇
  2013年   30篇
  2012年   26篇
  2011年   32篇
  2010年   13篇
  2009年   13篇
  2008年   18篇
  2007年   19篇
  2006年   13篇
  2005年   13篇
  2004年   6篇
  2003年   13篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1991年   4篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1972年   1篇
排序方式: 共有372条查询结果,搜索用时 31 毫秒
11.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   
12.
13.
Mankad  Aditi  Zhang  Airong  Carter  Lucy  Curnock  Matthew 《Biological invasions》2022,24(3):709-723
Biological Invasions - Pest carp species are a problem around the world, particularly in Australia where European carp (Cyprinus carpio) account for up to 90% of fish biomass in several major river...  相似文献   
14.
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100?ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
The protozoan parasites Trypanosoma, Leishmania and Crithidia, which belong to the order kinetoplastidae, emerge from the most ancient eukaryotic lineages. The diversity found in the life cycle of these organisms must be directed by genetic events, wherein topoisomerases play an important role in cellular processes affecting the topology and organization of intracellular DNA. Topoisomerases are valuable as potential drug targets because they have indispensable function in cell biology. This review summarizes what is known about topoisomerase genes and proteins of kinetoplastid parasites and the roles of these enzymes as targets for therapeutic agents.  相似文献   
16.
Zhong D  Pai A  Yan G 《Genetics》2003,165(3):1307-1315
Parasites have profound effects on host ecology and evolution, and the effects of parasites on host ecology are often influenced by the magnitude of host susceptibility to parasites. Many parasites have complex life cycles that require intermediate hosts for their transmission, but little is known about the genetic basis of the intermediate host's susceptibility to these parasites. This study examined the genetic basis of susceptibility to a tapeworm (Hymenolepis diminuta) in the red flour beetle (Tribolium castaneum) that serves as an intermediate host in its transmission. Quantitative trait loci (QTL) mapping experiments were conducted with two independent segregating populations using amplified fragment length polymorphism (AFLP) markers and randomly amplified polymorphic DNA (RAPD) markers. A total of five QTL that significantly affected beetle susceptibility were identified in the two reciprocal crosses. Two common QTL on linkage groups 3 and 6 were identified in both crosses with similar effects on the phenotype, and three QTL were unique to each cross. In one cross, the three main QTL accounted for 29% of the total phenotypic variance and digenic epistasis explained 39% of the variance. In the second cross, the four main QTL explained 62% of the variance and digenic epistasis accounted for only 5% of the variance. The actions of these QTL were either overdominance or underdominance. Our results suggest that the polygenic nature of beetle susceptibility to the parasites and epistasis are important genetic mechanisms for the maintenance of variation within or among beetle strains in susceptibility to tapeworm infection.  相似文献   
17.
In this study, we evaluated the molecular mechanisms involved in morphine-induced macrophage apoptosis. Both morphine and TGF-beta promoted P38 mitogen-activated protein kinase (MAPK) phosphorylation, and this phosphorylation was inhibited by SB 202190 as well as by SB 203580. Anti-TGF-beta Ab as well as naltrexone (an opiate receptor antagonist) inhibited morphine-induced macrophage P38 MAPK phosphorylation. Anti-TGF-beta Ab also attenuated morphine-induced p53 as well as inducible NO synthase expression; in contrast, N(G)-nitro-L-arginine methyl ester, an inhibitor of NO synthase, inhibited morphine-induced P38 MAPK phosphorylation and Bax expression. Morphine also enhanced the expression of both Fas and Fas ligand (FasL), whereas anti-FasL Ab prevented morphine-induced macrophage apoptosis. Moreover, naltrexone inhibited morphine-induced FasL expression. In addition, macrophages either deficient in FasL or lacking p53 showed resistance to the effect of morphine. Inhibitors of both caspase-8 and caspase-9 partially prevented the apoptotic effect of morphine on macrophages. In addition, caspase-3 inhibitor prevented morphine-induced macrophage apoptosis. These findings suggest that morphine-induced macrophage apoptosis proceeds through opiate receptors via P38 MAPK phosphorylation. Both TGF-beta and inducible NO synthase play an important role in morphine-induced downstream signaling, which seems to activate proteins involved in both extrinsic (Fas and FasL) and intrinsic (p53 and Bax) cell death pathways.  相似文献   
18.
The envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41 subunits) are associated by relatively weak, noncovalent interactions. The induction of neutralizing antibodies after vaccination with individual Env subunits has proven very difficult, probably because they are inadequate mimics of the native complex. Our hypothesis is that a stable form of the Env complex, perhaps with additional modifications to rationally alter its antigenic structure, may be a better immunogen than the individual subunits. A soluble form of Env, SOS gp140, can be made that has gp120 stably linked to the gp41 ectodomain by an intermolecular disulfide bond. This protein is fully cleaved at the proteolysis site between gp120 and gp41. However, the gp41-gp41 interactions in SOS gp140 are too weak to maintain the protein in a trimeric configuration. Consequently, purified SOS gp140 is a monomer (N. Schülke, M. S. Vesanen, R. W. Sanders, P. Zhu, D. J. Anselma, A. R. Villa, P. W. H. I. Parren, J. M. Binley, K. H. Roux, P. J. Maddon, J. P. Moore, and W. C. Olson, J. Virol. 76:7760-7776, 2002). Here we describe modifications of SOS gp140 that increase its trimer stability. A variant SOS gp140, designated SOSIP gp140, contains an isoleucine-to-proline substitution at position 559 in the N-terminal heptad repeat region of gp41. This protein is fully cleaved, has favorable antigenic properties, and is predominantly trimeric. SOSIP gp140 trimers are noncovalently associated and can be partially purified by gel filtration chromatography. These gp140 trimers are dissociated into monomers by anionic detergents or heat but are relatively resistant to nonionic detergents, high salt concentrations, or exposure to a mildly acidic pH. SOSIP gp140 should be a useful reagent for structural and immunogenicity studies.  相似文献   
19.
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号