首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   41篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   16篇
  2020年   10篇
  2019年   13篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   26篇
  2014年   25篇
  2013年   29篇
  2012年   43篇
  2011年   57篇
  2010年   38篇
  2009年   22篇
  2008年   33篇
  2007年   34篇
  2006年   17篇
  2005年   23篇
  2004年   16篇
  2003年   18篇
  2002年   15篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
71.
Capsules frequently play a key role in bacterial interactions with their environment. Escherichia coli capsules were categorized as groups 1 through 4, each produced by a distinct mechanism. Etk and Etp are members of protein families required for the production of group 1 and group 4 capsules. These members function as a protein tyrosine kinase and protein tyrosine phosphatase, respectively. We show that Etp dephosphorylates Etk in vivo, and mutations rendering Etk or Etp catalytically inactive result in loss of group 4 capsule production, supporting the notion that cyclic phosphorylation and dephosphorylation of Etk is required for capsule formation. Notably, Etp also becomes tyrosine phosphorylated in vivo and catalyzes rapid auto-dephosphorylation. Further analysis identified Tyr121 as the phosphorylated residue of Etp. Etp containing Phe, Glu or Ala in place of Tyr121 retained phosphatase activity and catalyzed dephosphorylation of Etp and Etk. Although EtpY121E and EtpY121A still supported capsule formation, EtpY121F failed to do so. These results suggest that cycles of phosphorylation and dephosphorylation of Etp, as well as Etk, are involved in the formation of group 4 capsule, providing an additional regulatory layer to the complex control of capsule production.  相似文献   
72.
A wide variety of biochemical, physiological, and molecular processes are known to have daily rhythms driven by an endogenous circadian clock. While extensive research has greatly improved our understanding of the molecular mechanisms that constitute the circadian clock, the links between this clock and dependent processes have remained elusive. To address this gap in our knowledge, we have used RNA sequencing (RNA–seq) and DNA microarrays to systematically identify clock-controlled genes in the zebrafish pineal gland. In addition to a comprehensive view of the expression pattern of known clock components within this master clock tissue, this approach has revealed novel potential elements of the circadian timing system. We have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb plays a role in linking the pineal master clock with the periphery.  相似文献   
73.
There is a difference in the susceptibility to inflammation between the umbilical vein (UV) and the umbilical arteries (UAs). This led us to hypothesize that there is an intrinsic difference in the pro-inflammatory response between UA and UV. Real-time quantitative RT-PCR and microarray analysis revealed higher expression of interleukin (IL)-1β and IL-8 mRNA in the UV and differential expression of 567 genes between the UA and UV associated with distinct biological processes, including the immune response. Differential expression of human leukocyte antigen (HLA)-DRA mRNA between the UA and UV was due to unexpected HLA-DR+ cells migrating via the umbilical vessels into Wharton's jelly, more frequently in the UV. A significant proportion of these cells co-expressed CD45 and type I pro-collagen, and acquired CD163 or α-smooth muscle actin immunoreactivity in Wharton's jelly. Migrating cells were also found in the chorionic and stem villous vessels. Furthermore, the extent of migration increased with progression of gestation, but diminished in intrauterine growth restriction (IUGR). The observations herein strongly suggest that circulating foetal fibrocytes, routing via umbilical and placental vessels, are a reservoir for key cellular subsets in the placenta. This study reports fibrocytes in the human umbilical cord and placenta for the first time, and a novel role for both circulating foetal cells and the umbilical vessels in placental development, which is deranged in IUGR.  相似文献   
74.
75.
As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1 ml samples of the cryoprotective agent cocktail DP6, contained in a standard 15 ml glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress, which results in instantaneous fracture at low cooling rates, is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold.  相似文献   
76.
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.  相似文献   
77.
The differential display technique was used to generate cDNA probes in order to identify mRNAs that are up-regulated during senescence of Arabidopsis leaves. Three mRNAs were examined that had not previously been associated with senescence. The steady-state levels of these mRNAs are detectable in small amounts in mature green leaves, but increase considerably as chlorophyll levels begin to decline. This relationship to senescence occurs under natural circumstances as well as when senescence is accelerated by leaf detachment in the dark or by addition of 1-aminocyclopropane-1-carboxylic acid (ACC). Retardation of senescence by benzyladenine slows the increase of the mRNAs. One of these mRNAs appears to code for a protein (Sec 13) that may be involved in vesicle formation at the endoplasmic reticulum. Another mRNA codes for a protein with WD‐repeat motif whose function is as yet unidentified, and the third codes for a putative calcium-dependent protein kinase. A fourth cDNA has also been cloned by subtractive hybridization from senescing Arabidopsis leaves that encodes vacuolar-processing enzyme ( γ VPE). Incubation of detached leaves in darkness also caused an abrupt elevation in the steady-state levels of the γVPE , similar to that of the senescing attached leaves. The possible functions of the gene products and their involvement in cellular and biochemical processes during senescence are discussed.  相似文献   
78.
Small cell lung cancer (SCLC) is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2). Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a “stem-cell like” hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号