全文获取类型
收费全文 | 500篇 |
免费 | 41篇 |
专业分类
541篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 9篇 |
2021年 | 16篇 |
2020年 | 10篇 |
2019年 | 13篇 |
2018年 | 13篇 |
2017年 | 12篇 |
2016年 | 17篇 |
2015年 | 26篇 |
2014年 | 25篇 |
2013年 | 29篇 |
2012年 | 43篇 |
2011年 | 57篇 |
2010年 | 38篇 |
2009年 | 22篇 |
2008年 | 33篇 |
2007年 | 34篇 |
2006年 | 17篇 |
2005年 | 23篇 |
2004年 | 16篇 |
2003年 | 18篇 |
2002年 | 15篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 8篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有541条查询结果,搜索用时 15 毫秒
131.
Priya Sridevi Hannah Alexander Junxia Min Adi Mesika Anthony H. Futerman 《Experimental cell research》2010,316(1):78-42458
The ceramide synthase (CerS) enzymes are key regulators of ceramide homeostasis. CerS1 is central to regulating C18 ceramide which has been shown to be important in cancer and the response to chemotherapeutic drugs. Previous work indicated that some drugs induced a novel and specific translocation of CerS1 from the endoplasmic reticulum to the Golgi apparatus. We now show that diverse stresses such as UV light, DTT, as well as drugs with different mechanisms of action induce CerS1 translocation. The stresses cause a specific cleavage of the CerS1 enzyme, and the cleavage is dependent on the action of the proteasome. Inhibition of proteasome function inhibits stress-induced CerS1 translocation, indicating that this proteolytic cleavage precedes the translocation. Modulation of protein kinase C activity shows that it plays a central role in regulating CerS1 translocation. Analysis of the C-terminus of the CerS1 protein shows that several KxKxx motifs are not involved in regulating stress induced translocation. The study suggests that diverse stresses initiate responses through different signaling pathways, which ultimately converge to regulate CerS1 localization. The data provide an increasingly detailed understanding of the regulation of this important enzyme in normal and stressed cells and support the idea that it is uniquely regulated with respect to the other CerS enzymes. 相似文献
132.
DAP1, a Novel Substrate of mTOR,Negatively Regulates Autophagy 总被引:1,自引:0,他引:1
133.
Guenebeaud C Goldschneider D Castets M Guix C Chazot G Delloye-Bourgeois C Eisenberg-Lerner A Shohat G Zhang M Laudet V Kimchi A Bernet A Mehlen P 《Molecular cell》2010,40(6):863-876
The UNC5H dependence receptors promote apoptosis in the absence of their ligand, netrin-1, and this is important for neuronal and vascular development and for limitation of cancer progression. UNC5H2 (also called UNC5B) triggers cell death through the activation of the serine-threonine protein kinase DAPk. While performing a siRNA screen to identify genes implicated in UNC5H-induced apoptosis, we identified the structural subunit PR65β of the holoenzyme protein phosphatase 2A (PP2A). We show that UNC5H2/B recruits a protein complex that includes PR65β and DAPk and retains PP2A activity. PP2A activity is required for UNC5H2/B-induced apoptosis, since it activates DAPk by triggering its dephosphorylation. Moreover, netrin-1 binding to UNC5H2/B prevents this effect through interaction of the PP2A inhibitor CIP2A to UNC5H2/B. Thus we show here that, in the absence of netrin-1, recruitment of PP2A to UNC5H2/B allows the activation of DAPk via a PP2A-mediated dephosphorylation and that this mechanism is involved in angiogenesis regulation. 相似文献
134.
William W. Lockwood Raj Chari Bradley P. Coe Kelsie L. Thu Cathie Garnis Chad A. Malloff Jennifer Campbell Ariane C. Williams Dorothy Hwang Chang-Qi Zhu Timon P. H. Buys John Yee John C. English Calum MacAulay Ming-Sound Tsao Adi F. Gazdar John D. Minna Stephen Lam Wan L. Lam 《PLoS medicine》2010,7(7)
135.
The tumor suppressor functions of p19(ARF) have been attributed to its ability to induce cell cycle arrest or apoptosis by activating p53 and regulating ribosome biogenesis. Here we describe another cellular function of p19(ARF), involving a short isoform (smARF, short mitochondrial ARF) that localizes to a Proteinase K-resistant compartment of the mitochondria. smARF is a product of internal initiation of translation at Met45, which lacks the nucleolar functional domains. The human p14(ARF) mRNA likewise produces a shorter isoform. smARF is maintained at low levels via proteasome-mediated degradation, but it increases in response to viral and cellular oncogenes. Ectopic expression of smARF reduces mitochondrial membrane potential (DeltaPsim) without causing cytochrome c release or caspase activation. The dissipation of DeltaPsim does not depend on p53 or Bcl-2 family members. smARF induces massive autophagy and caspase-independent cell death that can be partially rescued by knocking down ATG5 or Beclin-1, suggesting a different prodeath function for this short isoform. 相似文献
136.
Lianna Poghosyan Hanna Koch Adi Lavy Jeroen Frank Maartje A.H.J. van Kessel Mike S.M. Jetten Jillian F. Banfield Sebastian Lücker 《Environmental microbiology》2019,21(10):3627-3637
The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I–V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated. 相似文献
137.
Maman Y Blancher A Benichou J Yablonka A Efroni S Louzoun Y 《Journal of virology》2011,85(9):4558-4566
Viruses employ various means to evade immune detection. Reduction of CD8(+) T cell epitopes is one of the common strategies used for this purpose. Hepatitis B virus (HBV), a member of the Hepadnaviridae family, has four open reading frames, with about 50% overlap between the genes they encode. We computed the CD8(+) T cell epitope density within HBV proteins and the mutations within the epitopes. Our results suggest that HBV accumulates escape mutations that reduce the number of epitopes. These mutations are not equally distributed among genes and reading frames. While the highly expressed core and X proteins are selected to have low epitope density, polymerase, which is expressed at low levels, does not undergo the same selection. In overlapping regions, mutations in one protein-coding sequence also affect the other protein-coding sequence. We show that mutations lead to the removal of epitopes in X and surface proteins even at the expense of the addition of epitopes in polymerase. The total escape mutation rate for overlapping regions is lower than that for nonoverlapping regions. The lower epitope replacement rate for overlapping regions slows the evolutionary escape rate of these regions but leads to the accumulation of mutations more robust in the transfer between hosts, such as mutations preventing proteasomal cleavage into epitopes. 相似文献
138.
In this issue of Molecular Cell, Lee et al. (2011) identify the peptidyl-prolyl isomerase Pin1 as a substrate of DAP kinase, simultaneously providing a critical regulatory mechanism for Pin1 inhibition and a potential mechanism that accounts for DAPK's tumor-suppressive activities. 相似文献
139.
David G. Zacharias Sung Gyun Kim Alfonso Eirin Massat Adi R. Bachar Yun K. Oh Joerg Herrmann Martin Rodriguez-Porcel Pinchas Cohen Lilach O. Lerman Amir Lerman 《PloS one》2012,7(2)