首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   135篇
  1272篇
  2024年   4篇
  2023年   11篇
  2022年   15篇
  2021年   38篇
  2020年   17篇
  2019年   27篇
  2018年   27篇
  2017年   26篇
  2016年   31篇
  2015年   52篇
  2014年   56篇
  2013年   53篇
  2012年   93篇
  2011年   129篇
  2010年   75篇
  2009年   50篇
  2008年   73篇
  2007年   66篇
  2006年   50篇
  2005年   51篇
  2004年   48篇
  2003年   43篇
  2002年   42篇
  2001年   6篇
  2000年   15篇
  1999年   13篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   14篇
  1989年   4篇
  1988年   9篇
  1987年   3篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1981年   4篇
  1980年   6篇
  1979年   9篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1971年   4篇
  1970年   3篇
排序方式: 共有1272条查询结果,搜索用时 15 毫秒
11.
David Granot  Nir Dai 《Planta》1996,198(1):162-163
A cDNA clone, pAUK1, with an open reading frame (ORF) coding for a hypothetical 164-amino-acid protein was isolated from an Arabidopsis thaliana (L.) Heynh cDNA library. The clone was attached, tail to tail, to the 3′ end of A. thaliana hexokinase cDNA. An almost identical sequence had been previously described as the 5′ untranslated region (5′ UTR) of A. thaliana calmodulin cDNA (ACaM-2). Sequence comparison with three additional A. thaliana truncated cDNA clones which appear in a database (GenBank) supports the conclusion that pAUKl is identical to the 5′ UTR of ACaM-2 and that the 5′ UTR of ACaM-2 is an independent cDNA artificially linked to A. thaliana calmodulin cDNA.  相似文献   
12.
Intact Sendai virus particles were radiolabeled by the use of chloramine-T and Na 125I. The method described is reproducible, efficient and appropriate for the preparation of large quantities of biologically active virus with relatively high specific activity. Gel electrophoresis analysis of the radiolabeled virus revealed that approx. 50% of the total 125I incorporated in the virus are associated with the two viral envelope glycoproteins, while the remaining 50% are evenly distributed throughout the other viral polypeptides. The 125I-virus particles were used to study some of the kinetic parameters of the interaction between Sendai virus particles and human erythrocytes. Binding of virus particles at 4 °C is irreversible, non-cooperative and exhibits a characteristic saturation curve. A maximum of 1–2 × 103 virus particles bound per cell was derived from the saturation curve. Non-radioactive native virus particles as well as isolated glycophorin molecules competitively inhibit binding of the 125I-virus particles to human erythrocytes. Incubation at 37 °C of the virus-erythrocyte complex resulted in the release of about 33% of the bound virus to the surrounding medium.  相似文献   
13.
23Na NMR relaxation rate measurements show that Na+ binds specifically to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4--1.2 M-1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration.  相似文献   
14.
A mathematical model is presented herein to determine the effect of convection on macromolecular transport across an artery wall due to transmural or osmotic pressure differences. The model is based on an extension of the leaky junction-cell turnover model of Weinbaum et al. (1985) to take into account a combined transport mechanism of convection and diffusion and also to provide the leaky junctions in the model with a finite resistance, thus allowing the results to be extended to intercellular clefts with a retarding extracellular matrix or to macromolecules whose dimensions are nearly the same as the junctional width. The results from this improved model show that the effect of pressure on transarterial macromolecular transport is important especially for cell turnover rates greater than 1% and that significant changes in the equilibrium balance of the cholesterol carrying LDL molecules in the arterial wall can occur due to a very small fraction of leaky junctions. At very high turnover rates (large fraction of leaky junctions) the effect of convection on macromolecular transport becomes dramatic and explains the very large increases in uptake observed experimentally after artificially inducing extensive endothelial damage.  相似文献   
15.
23Na NMR relaxation rate measurements show that Na+ binds specificially to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4–1.2 M?1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration.  相似文献   
16.
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database was carried out, picking ∼4000 chemicals highly indexed as H4R antagonists'' candidates. Next, a series of 3D models of hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner.  相似文献   
17.
18.
The understanding of how proteins evolve to perform novel functions has long been sought by biologists. In this regard, two homologous bacterial enzymes, PafA and Dop, pose an insightful case study, as both rely on similar mechanistic properties, yet catalyze different reactions. PafA conjugates a small protein tag to target proteins, whereas Dop removes the tag by hydrolysis. Given that both enzymes present a similar fold and high sequence similarity, we sought to identify the differences in the amino acid sequence and folding responsible for each distinct activity. We tackled this question using analysis of sequence–function relationships, and identified a set of uniquely conserved residues in each enzyme. Reciprocal mutagenesis of the hydrolase, Dop, completely abolished the native activity, at the same time yielding a catalytically active ligase. Based on the available Dop and PafA crystal structures, this change of activity required a conformational change of a critical loop at the vicinity of the active site. We identified the conserved positions essential for stabilization of the alternative loop conformation, and tracked alternative mutational pathways that lead to a change in activity. Remarkably, all these pathways were combined in the evolution of PafA and Dop, despite their redundant effect on activity. Overall, we identified the residues and structural elements in PafA and Dop responsible for their activity differences. This analysis delineated, in molecular terms, the changes required for the emergence of a new catalytic function from a preexisting one.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号