首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   76篇
  国内免费   1篇
  2022年   9篇
  2021年   18篇
  2020年   15篇
  2019年   6篇
  2018年   16篇
  2017年   13篇
  2016年   13篇
  2015年   26篇
  2014年   32篇
  2013年   65篇
  2012年   56篇
  2011年   56篇
  2010年   31篇
  2009年   34篇
  2008年   54篇
  2007年   41篇
  2006年   36篇
  2005年   30篇
  2004年   38篇
  2003年   23篇
  2002年   39篇
  2001年   4篇
  2000年   10篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1981年   4篇
  1980年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1966年   2篇
  1962年   2篇
排序方式: 共有794条查询结果,搜索用时 31 毫秒
71.
Urinary catheterization is a routine procedure in an intensive care unit (ICU) for monitoring the urine output of critically ill patients. The catheters which are most often used to help with urinary incontinence and retention also face problems like blockage, leakage and infection. These problems are due to proteins that adhere to the catheter surface and quickly build up on each other forming a protein layer. As the layers build up they can crystallize, providing the major source of blockage and leakage. Current strategies to avoid these problems include coating a catheter with silver alloy to reduce bacteria on the catheter surface. However, silver alloy coatings can lead to increased silver resistance for bacteria. Since silver is already used as an antibacterial agent in many places in a hospital, it is even more possible that resistance can develop. An alternative solution is presented involving coating latex, a common urinary catheter material with a micro layer (5-100 microns) of polyethylene glycol. This hydrogel is applied using an interfacial photopolymerization process with ethyl eosin as the photoinitiator. A 25 ppm concentration of ethyl eosin provided the strongest gel to surface adhesion and significantly lowered protein adhesion when compared to an uncoated latex substrate.  相似文献   
72.
Mukherjee S  Basu S  Home P  Dhar G  Adhya S 《EMBO reports》2007,8(6):589-595
The mechanism of active transport of transfer RNA (tRNA) across membranes is largely unknown. Factors mediating the import of tRNA into the kinetoplast mitochondrion of the protozoon Leishmania tropica are organized into a multiprotein RNA import complex (RIC) at the inner membrane. Here, we present the complete characterization of the identities and functions of the subunits of this complex. The complex contains three mitochondrion- and eight nuclear-encoded subunits; six of the latter are necessary and sufficient for import. Antisense-mediated knockdown of essential subunits resulted in the depletion of mitochondrial tRNAs and inhibition of organellar translation. Functional complexes were reconstituted with recombinant subunits expressed in Escherichia coli. Several essential RIC subunits are identical to specific subunits of respiratory complexes. These findings provide new information on the evolution of tRNA import and the foundation for detailed structural and mechanistic studies.  相似文献   
73.
74.
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell''s leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.  相似文献   
75.
76.
YagE is a 33 kDa prophage protein encoded by CP4-6 prophage element in Escherichia coli K12 genome. Here, we report the structures of YagE complexes with pyruvate (PDB Id 3N2X) and KDGal (2-keto-3-deoxy galactonate) (PDB Id 3NEV) at 2.2A resolution. Pyruvate depletion assay in presence of glyceraldehyde shows that YagE catalyses the aldol condensation of pyruvate and glyceraldehyde. Our results indicate that the biochemical function of YagE is that of a 2-keto-3-deoxy gluconate (KDG) aldolase. Interestingly, E. coli K12 genome lacks an intrinsic KDG aldolase. Moreover, the over-expression of YagE increases cell viability in the presence of certain bactericidal antibiotics, indicating a putative biological role of YagE as a prophage encoded virulence factor enabling the survival of bacteria in the presence of certain antibiotics. The analysis implies a possible mechanism of antibiotic resistance conferred by the over-expression of prophage encoded YagE to E. coli.  相似文献   
77.
Formins are a large family of actin assembly-promoting proteins with many important biological roles. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin. Here, we found that yeast and mammalian formins bind actin monomers but that this activity requires their C-terminal DAD domains. Furthermore, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Furthermore, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation. Together, our data show that (1) the DAD has dual functions in autoinhibition and nucleation; (2) the FH1, FH2, and DAD form a tripartite nucleation machine; and (3) formins nucleate by recruiting actin monomers and therefore are more similar to other nucleators than previously thought.  相似文献   
78.
The viral neuraminidase enzyme is an established target for anti-influenza pharmaceuticals. However, viral neuraminidase inhibitors could have off-target effects due to interactions with native human neuraminidase enzymes. We report the activity of a series of known inhibitors of the influenza group-1 neuraminidase enzyme (N1 subtype) against recombinant forms of the human neuraminidase enzymes NEU3 and NEU4. These inhibitors were designed to take advantage of an additional enzyme pocket (known as the 150-cavity) near the catalytic site of certain viral neuraminidase subtypes (N1, N4 and N8). We find that these modified derivatives have minimal activity against the human enzymes, NEU3 and NEU4. Two compounds show moderate activity against NEU3, possibly due to alternative binding modes available to these structures. Our results reinforce that recognition of the glycerol side-chain is distinct between the viral and human NEU enzymes, and provide experimental support for improving the selectivity of viral neuraminidase inhibitors by exploiting the 150-cavity found in certain subtypes of viral neuraminidases.  相似文献   
79.
G-protein coupled receptors (GPCRs) belong to biologically important and functionally diverse and largest super family of membrane proteins. GPCRs retain a characteristic membrane topology of seven alpha helices with three intracellular, three extracellular loops and flanking N' and C' terminal residues. Subtle differences do exist in the helix boundaries (TM-domain), loop lengths, sequence features such as conserved motifs, and substituting amino acid patterns and their physiochemical properties amongst these sequences (clusters) at intra-genomic and inter-genomic level (please re-phrase into 2 statements for clarity). In the current study, we employ prediction of helix boundaries and scores derived from amino acid substitution exchange matrices to identify the conserved amino acid residues (motifs) as consensus in aligned set of homologous GPCR sequences. Co-clustered GPCRs from human and other genomes, organized as 32 clusters, were employed to study the amino acid conservation patterns and species-specific or cluster-specific motifs. Critical analysis on sequence composition and properties provide clues to connect functional relevance within and across genome for vast practical applications such as design of mutations and understanding of disease-causing genetic abnormalities.  相似文献   
80.
Zheng L  Dai H  Hegde ML  Zhou M  Guo Z  Wu X  Wu J  Su L  Zhong X  Mitra S  Huang Q  Kernstine KH  Pfeifer GP  Shen B 《Cell research》2011,21(7):1052-1067
DNA replication and repair are critical processes for all living organisms to ensure faithful duplication and transmission of genetic information. Flap endonuclease 1 (Fen1), a structure-specific nuclease, plays an important role in multiple DNA metabolic pathways and maintenance of genome stability. Human FEN1 mutations that impair its exonuclease activity have been linked to cancer development. FEN1 interacts with multiple proteins, including proliferation cell nuclear antigen (PCNA), to form various functional complexes. Interactions with these proteins are considered to be the key molecular mechanisms mediating FEN1's key biological functions. The current challenge is to experimentally demonstrate the biological consequence of a specific interaction without compromising other functions of a desired protein. To address this issue, we established a mutant mouse model harboring a FEN1 point mutation (F343A/F344A, FFAA), which specifically abolishes the FEN1/PCNA interaction. We show that the FFAA mutation causes defects in RNA primer removal and long-patch base excision repair, even in the heterozygous state, resulting in numerous DNA breaks. These breaks activate the G2/M checkpoint protein, Chk1, and induce near-tetraploid aneuploidy, commonly observed in human cancer, consequently elevating the transformation frequency. Consistent with this, inhibition of aneuploidy formation by a Chk1 inhibitor significantly suppressed the cellular transformation. WT/FFAA FEN1 mutant mice develop aneuploidy-associated cancer at a high frequency. Thus, this study establishes an exemplary case for investigating the biological significance of protein-protein interactions by knock-in of a point mutation rather than knock-out of a whole gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号