首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   197篇
  国内免费   5篇
  2023年   7篇
  2022年   16篇
  2021年   42篇
  2020年   25篇
  2019年   48篇
  2018年   64篇
  2017年   35篇
  2016年   42篇
  2015年   87篇
  2014年   78篇
  2013年   75篇
  2012年   99篇
  2011年   103篇
  2010年   75篇
  2009年   52篇
  2008年   70篇
  2007年   51篇
  2006年   37篇
  2005年   50篇
  2004年   43篇
  2003年   36篇
  2002年   21篇
  2001年   13篇
  2000年   18篇
  1999年   10篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1994年   8篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   11篇
  1977年   6篇
  1976年   5篇
  1975年   8篇
  1974年   10篇
  1973年   5篇
  1968年   2篇
排序方式: 共有1387条查询结果,搜索用时 31 毫秒
31.
32.
The pandemic outbreaks of coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), spread all over the world in a short period of time. Efficient identification of the infection by SARS‐CoV‐2 has been one of the most important tasks to facilitate all the following counter measurements in dealing with the infectious disease. In Taiwan, a COVID‐19 Open Science Platform adheres to the spirit of open science: sharing sources, data, and methods to promote progress in academic research while corroborating findings from various disciplines has established in mid‐February 2020, for collaborative research in support of the development of detection methods, therapeutics, and a vaccine for COVID‐19. Research priorities include infection control, epidemiology, clinical characterization and management, detection methods (including viral RNA detection, viral antigen detection, and serum antibody detection), therapeutics (neutralizing antibody and small molecule drugs), vaccines, and SARS‐CoV‐2 pathogenesis. In addition, research on social ethics and the law are included to take full account of the impact of the COVID‐19 virus.  相似文献   
33.
Understanding animal foraging ecology requires large sample sizes spanning broad environmental and temporal gradients. For pollinators, this has been hampered by the laborious nature of morphologically identifying pollen. Identifying pollen from urban environments is particularly difficult due to the presence of diverse ornamental species associated with consumer horticulture. Metagenetic pollen analysis represents a potential solution to this issue. Building upon prior laboratory and bioinformatic methods, we applied quantitative multilocus metabarcoding to characterize the foraging ecology of honeybee colonies situated in urban, suburban, mixed suburban–agricultural and rural agricultural sites in central Ohio, USA. In cross‐validating a subset of our metabarcoding results using microscopic palynology, we find strong concordance between the molecular and microscopic methods. Our results suggest that forage from the agricultural site exhibited decreased taxonomic diversity and temporal turnover relative to the urban and suburban sites, though the generalization of this observation will require replication across additional sites and cities. Our work demonstrates the power of honeybees as environmental samplers of floral community composition at large spatial scales, aiding in the distinction of taxa characteristically associated with urban or agricultural land use from those distributed ubiquitously across the sampled landscapes. Observed patterns of high forage diversity and compositional turnover in our more urban sites are likely reflective of the fine‐grain heterogeneity and high beta diversity of urban floral landscapes at the scale of honeybee foraging. This provides guidance for future studies investigating how relationships between urbanization and measures of pollinator health are mediated by variation in floral resource dynamics across landscapes.  相似文献   
34.
Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.  相似文献   
35.
International Journal of Peptide Research and Therapeutics - Although peptide drugs make up only about 2% of all drugs approved by the United States Food and Drug Administration (FDA), they play...  相似文献   
36.
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.  相似文献   
37.
Quantification of the calorific content of microalgae is critical in studies of energy flow, trophic partitioning, plant/herbivore interactions in aquaculture and biomass production for biofuels. We investigated the calorific value and biochemical composition of Chlorella vulgaris at different phosphorus (P) concentrations (6.0 × 10?7, 2.3 × 10?6 and 2.3 × 10?4 mol L?1 P). As expected, the control (2.3 × 10?4 mol L?1 P) supported better growth than P limited treatments. Biomolecules like total carbohydrates and lipids accumulated under P limitation, which significantly correlated with high calorific values. Lipid class composition showed that triacylglycerols were the most accumulated under P limited conditions. The calorific value reported under control conditions (13.78 kJ g?1) was less than those obtained under P limitation (30.47–33.07 kJ g?1). The highest calorific value with less growth retardation was obtained at 2.3 × 10?6 mol L?1 P.  相似文献   
38.
Apicomplexan parasites, such as Toxoplasma gondii and Plasmodium, secrete proteins for attachment, invasion and modulation of their host cells. The host targeting (HT), also known as the Plasmodium export element (PEXEL), directs Plasmodium proteins into erythrocytes to remodel the host cell and establish infection. Bioinformatic analysis of Toxoplasma revealed a HT/PEXEL‐like motif at the N‐terminus of several hypothetical unknown and dense granule proteins. Hemagglutinin‐tagged versions of these uncharacterized proteins show co‐localization with dense granule proteins found on the parasitophorous vacuole membrane (PVM). In contrast to Plasmodium, these Toxoplasma HT/PEXEL containing proteins are not exported into the host cell. Site directed mutagenesis of the Toxoplasma HT/PEXEL motif, RxLxD/E, shows that the arginine and leucine residues are permissible for protein cleavage. Mutations within the HT/PEXEL motif that prevent protein cleavage still allow for targeting to the PV but the proteins have a reduced association with the PVM. Addition of a Myc tag before and after the cleavage site shows that processed HT/PEXEL protein has increased PVM association. These findings suggest that while Toxoplasma and Plasmodium share similar HT/PEXEL motifs, Toxoplasma HT/PEXEL containing proteins interact with but do not cross the PVM .  相似文献   
39.
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.  相似文献   
40.

Introduction

We investigated the changing trend of various toxigenic Clostridium difficile isolates at a 3 500-bed hospital in Taiwan. Genetic relatedness and antimicrobial susceptibility of toxigenic C. difficile isolates were also examined.

Methods

A total of 110 non-repeat toxigenic C. difficile isolates from different patients were collected between 2002 and 2007. Characterization of the 110 toxigenic isolates was performed using agar dilution method, multilocus variable-number tandem-repeat analysis (MLVA) genotyping, tcdC genotyping, and toxinotyping.

Results

Among the 110 toxigenic isolates studied, 70 isolates harbored tcdA and tcdB (A+B+) and 40 isolates harbored tcdB only (AB+). The annual number of A+B+ isolates considerably increased over the 6-year study (P = 0.055). A total of 109 different MLVA genotypes were identified, in which A+B+ isolates and AB+ isolates were differentiated into two genetic clusters with similarity of 17.6%. Twenty-four (60%) of the 40 AB+ isolates formed a major cluster, MLVA-group 1, with a similarity of 85%. Seven (6.4%) resistant isolates were identified, including two metronidazole-resistant and five vancomycin-resistant isolates.

Conclusions

This study indicated a persistence of a MLVA group 1 AB+ isolates and an increase of A+B+ isolates with diverse MLVA types. Moreover, C. difficile isolates with antimicrobial resistance to metronidazole or vancomycin were found to have emerged. Continuous surveillance is warranted to understand the recent situation and control the further spread of the toxigenic C. difficile isolates, especially among hospitalized patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号