首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   14篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   11篇
  2011年   9篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   8篇
  2000年   4篇
  1999年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   7篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   8篇
  1983年   2篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1966年   2篇
  1956年   1篇
  1949年   1篇
  1932年   1篇
排序方式: 共有227条查询结果,搜索用时 265 毫秒
51.
52.
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n=54; 9±3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabelled with fast and slow myosin heavy chain monoclonal antibodies. Mean±S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112±69 vs. 34±21x103 m3) than fast and slow soleus fibers (40±20 vs. 30±14x103 m3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (<70 m) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (>70 m) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116±51 vs. 55±22 and 44±23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.  相似文献   
53.
54.
Glucocorticoid receptors have been proposed to undergo an ATP-dependent recycling process in intact cells, and a functional role for receptor phosphorylation has been suggested. To further investigate this possibility we have examined the phosphate content of the steroid-binding protein of all glucocorticoid receptor forms which have been isolated from WEHI-7 mouse thymoma cells. By labeling of intact cells with 32Pi for 18-20 h in the absence of hormone, covalent binding of [3H]dexamethasone 21-mesylate, immunopurification and SDS-PAGE analysis, the steroid binding protein was found to contain, on average, 2-3 phosphates as phosphoserine. One third of the phosphates were associated with proteolytic fragments encompassing the C-terminal steroid-binding domain. The central DNA-binding domain was not phosphorylated, leaving the other two thirds of the phosphates localized in the N-terminal domain. The phosphate content of various receptor forms from cells incubated with 32Pi and [35S]methionine was compared using 35S to normalize for quantity of protein. In ATP-depleted cells a non-steroid-binding form of the receptor (the "null" receptor) is found tightly bound to the nucleus, even without steroid. The phosphate content of null receptors was two thirds that of cytosolic receptors from normal cells, suggesting phosphorylation-dependent cycling in the absence of hormone. Addition of glucocorticoid agonists, but not antagonist, to 32P- and 35S-labeled cells increased the phosphate content of the cytosolic steroid-binding protein up to 170%, indicating an average increase in the phosphates from about 3 to 5. After 30 min of hormone treatment the phosphate content of the steroid-binding protein of cytosolic activated (DNA-binding) and nonactivated receptors, and that of nuclear receptors extractable with high salt concentrations and/or DNase I digestion, was the same. No change in the phosphate content of the 90-kDa heat shock protein associated with unliganded and nonactivated receptors was detected following association of the free protein with the receptor and following hormone binding of the receptor. Analysis of the unextractable nuclear receptors indicated that they contained less phosphate (60% of that of cytosolic receptors), similarly to null receptors, indicating that dephosphorylation is associated with the unextractable nuclear fraction. The rate of hormone-dependent phosphorylation appeared to be much faster than the rate of dephosphorylation in the presence of hormone, the latter determined by a chase of the 32P label with unlabeled phosphate. Our results show that phosphorylation and dephosphorylation are involved in the mechanism of action of glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
55.
14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a steam girdle translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.Abbreviations FW fresh weight - sen senecionine - sen-Nox senecionine N-oxide  相似文献   
56.
In 54 epileptic outpatients treated for at least one year with anticonvulsants the bone mineral content (B.M.C.), an estimate of total body calcium, and serum calcium were measured before and during treatment with three doses of cholecalciferol (vitamin D3; 200, 100, and 50 mu-g daily) and 25-hydroxycholecalciferol (25-OHD3; 40, 20, and 10 mu-g daily) for 12 weeks. The results, when compared with the effects of calciferol (vitamin D2; 200, 100, and 50 mu-g daily) in 40 epileptic outpatients, showed different actions in anticonvulsant osteomalacia of vitamin D2 on the one hand and vitamin D3 and 25-OHD3 on the other. In the patients who received vitamin D2 an increase in B.M.C. was found whereas serum calcium was unchanged. The patients who received vitamin D3 or 25-OHD3 showed an increase in serum calcium but unchanged values of B.M.C. The results suggest that liver enzyme induction cannot alone explain anticonvulsant osteomalacia.  相似文献   
57.
In order to determine the ratio of phosphates to hormone-binding sites on nonactivated (non-DNA-binding) glucocorticoid receptors in WEHI-7 mouse thymoma cells, we have extracted these receptors from cells grown to a steady state with 32P, labeled them with a saturating concentration of [3H]dexamethasone 21-mesylate, purified them using a monoclonal antibody, and analyzed them by polyacrylamide gel electrophoresis under denaturing and reducing conditions. The complexes contained approximately 5 mol of phosphate/mol of bound steroid. Only half of the phosphates were associated with the approximately 100-kDa protein which is labeled with [3H]dexamethasone 21-mesylate. The remaining phosphates were associated with the approximately 90-kDa non-steroid-binding component of the nonactivated complex. Dual label studies, using [35S]methionine to measure receptor protein and 32P to measure receptor phosphates, have enabled us to determine the phosphate content, relative to receptor protein, of both nonactivated and activated cytosolic complexes generated in intact WEHI-7 cells exposed to triamcinolone acetonide at 37 degrees C. The total amount of phosphate associated with the activated complex is roughly half of that associated with the nonactivated complex, the decrease being accounted for by dissociation of the approximately 90-kDa phosphoprotein which accompanies activation. However, the ratio of 32P to 35S counts associated with the approximately 100-kDa steroid-binding protein is the same for the activated and nonactivated complexes. These results indicate that there is no net change in the phosphorylation of the approximately 100-kDa steroid-binding component of the cytosolic glucocorticoid-receptor complex upon activation in the intact cell.  相似文献   
58.
To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels.  相似文献   
59.
We have used a monoclonal antibody to purify glucocorticoid-receptor complexes from WEHI-7 mouse thymoma cells. Molybdate-stabilized, nonactivated complexes were found to contain two distinct proteins which could be separated by polyacrylamide gel electrophoresis under denaturing and reducing conditions. One of the proteins, 100 kDa, was labeled when cytosol was incubated with the affinity ligand [3H]dexamethasone 21-mesylate. The second protein, 90 kDa, was not labeled. Several lines of evidence, including Western blot analysis of purified nonactivated complexes, indicate that only the 100-kDa protein is directly recognized by the antibody. The 90-kDa protein appears to be purified as a component of the nonactivated complex due to noncovalent association with the 100-kDa protein. Both the 100-kDa and 90-kDa components of the nonactivated complex become labeled with 35S when cells are grown in medium containing [35S]methionine. Using cells labeled in this manner, we have shown that activated (i.e. DNA-binding) cytosolic complexes, formed by warming either in intact cells or under cell-free conditions, contain only the 100-kDa protein. Complexes extracted from nuclei of warmed cells similarly contain only the 100-kDa protein. These results indicate that the 100-kDa and 90-kDa components of nonactivated complexes separate upon activation. Purification of nonactivated complexes from cells grown in medium containing [32P]orthophosphoric acid indicates that both the 100-kDa and 90-kDa components are phosphoproteins which can be labeled with 32P. Therefore, resolution of the two proteins will be essential in order to determine whether the receptor is dephosphorylated on activation.  相似文献   
60.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f.

Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700.

At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane.

The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin.

Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号