首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   11篇
  2012年   10篇
  2011年   10篇
  2010年   11篇
  2009年   7篇
  2008年   7篇
  2007年   5篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1965年   2篇
  1956年   1篇
  1949年   1篇
  1932年   1篇
排序方式: 共有163条查询结果,搜索用时 234 毫秒
41.
42.
The type I membrane protein calnexin is a conserved key component of the quality control mechanism in the endoplasmic reticulum. It functions as a molecular chaperone that monitors the folding state of nascent polypeptides entering the endoplasmic reticulum. Calnexin also behaves as a lectin, as its chaperoning activity involves binding of oligosaccharide moieties present on newly imported glycoproteins. We isolated the calnexin gene (HpCNE1) from the methylotrophic yeast Hansenula polymorpha, and used HpCNE1 expression plasmids for super-transformation of H. polymorpha strains secreting target proteins of biotechnological interest. The elevated dosage of HpCNE1 enhanced secretion of the four proteins tested: three glycoproteins and one unglycosylated product. Secretion of bacterial alginate epimerase AlgE1 was increased threefold on average, and secretion of both human interferon-gamma and fungal consensus phytase twofold. With phytase and AlgE1 this improvement was all the more remarkable, as the secretion level was already high in the original strains (g L(-1) range). The same approach improved secretion of human serum albumin, which lacks N-linked glycans, about twofold. Glycosylation of the pro-MFalpha1 leader may account for the effect of calnexin in this case. Our results argue that cooverexpression of calnexin can serve as a generally applicable tool for enhancing the secretion of all types of heterologous protein by H. polymorpha.  相似文献   
43.
44.
The avian paramyxovirus Newcastle disease virus (NDV) selectively replicates in tumor cells and is known to stimulate T-cell-, macrophage-, and NK cell-mediated responses. The mechanisms of NK cell activation by NDV are poorly understood so far. We studied the expression of ligand structures for activating NK cell receptors on NDV-infected tumor cells. Upon infection with the nonlytic NDV strain Ulster and the lytic strain MTH-68/H, human carcinoma and melanoma cells showed enhanced expression of ligands for the natural cytotoxicity receptors NKp44 and NKp46, but not NKp30. Ligands for the activating receptor NKG2D were partially downregulated. Soluble NKp44-Fc and NKp46-Fc, but not NKp30-Fc, chimeric proteins bound specifically to NDV-infected tumor cells and to NDV particle-coated plates. Hemagglutinin-neuraminidase (HN) of the virus serves as a ligand structure for NKp44 and NKp46, as indicated by the blockade of binding to NDV-infected cells and viral particles in the presence of anti-HN antibodies and by binding to cells transfected with HN cDNA. Consistent with the recognition of sialic acid moieties by the viral lectin HN, the binding of NKp44-Fc and NKp46-Fc was lost after desialylation. NKp44- and NKp46-CD3ζ lacZ-inducible reporter cells were activated by NDV-infected cells. NDV-infected tumor cells stimulated NK cells to produce increased amounts of the effector lymphokines gamma interferon and tumor necrosis factor alpha. Primary NK cells and the NK line NK-92 lysed NDV-infected tumor cells with enhanced efficiency, an effect that was eliminated by the treatment of target cells with the neuraminidase inhibitor Neu5Ac2en. These results suggest that direct activation of NK cells contributes to the antitumor effects of NDV.Virulent strains of Newcastle disease virus (NDV) infect domestic poultry and other birds, causing a rapidly spreading viral disease that affects the alimentary and respiratory tracts as well as the central nervous system (55). In humans, however, NDV is well tolerated (17, 18). Other than mild fever for a day, only a few adverse effects have been reported. NDV, also known as avian paramyxovirus 1, is an enveloped virus containing a negative-sense, single-stranded RNA genome which codes for six proteins in the order (from 3′ to 5′) of nucleoprotein, phosphoprotein, matrix protein, fusion (F) protein, hemagglutinin-neuraminidase (HN), and large polymerase protein (19). There are many different strains of NDV, classified as either lytic or nonlytic for different types of cells. Lytic and nonlytic NDV strains both replicate much more efficiently in human cancer cells than they do in most normal human cells (43). Viruses of both strain types have been investigated as potential anticancer agents (30, 49, 52). The NDV strains that have been evaluated most widely for the treatment of cancer are 73-T, MTH-68, and Ulster (1, 7, 11, 17, 18, 53, 54, 56, 71).Initial binding of NDV to a host cell takes place through the interaction of HN molecules in the virus coat with sialic acid-containing molecules on the cell surface (31). NDV neuraminidase has strict specificity for the hydrolysis of the NeuAc-α2,3-Gal linkage, with no hydrolysis of the NeuAc-α2,6-Gal linkage (41).NDV infection of tumor cells not only improves T-cell responses (53, 58, 68), but has also been reported to vigorously stimulate innate immune responses. In the course of NDV infection, large amounts of alpha interferon (IFN-α) are released (68) and in turn activate dendritic cells and NK cells and polarize, in concert with interleukin-12 (IL-12), toward a Th1 T-cell response (33, 44, 47). In addition, NDV induces antitumor cytotoxicity in murine macrophages which produce increased amounts of tumor necrosis factor alpha (TNF-α) and nitric oxide (51, 60) and in human monocytes through the induction of TRAIL (64). Little is known about the NDV-mediated activation of NK cells. The coincubation of peripheral blood mononuclear cells with NDV was shown previously to stimulate NK-mediated cytotoxicity (70). Enhanced cytotoxicity correlates with the induction of IFN-α (70). It is not known, however, whether NDV-infected cells can directly activate NK cells and, if so, which molecular interactions are involved.The cytolytic activity of NK cells against virus-infected or tumor cells is regulated by the engagement of activating or inhibitory NK cell surface receptors, the actions of cytokines, and cross talk with other immune cells (32, 39). Most inhibitory receptors recognize particular major histocompatibility complex (MHC) class I alleles and thereby ensure the tolerance of NK cells against self antigens (38). Activating receptors on human NK cells include CD16; NKG2D; the natural cytotoxicity receptors (NCR) NKp30, NKp44, and NKp46; as well as NKp80; DNAM-1; and various stimulatory coreceptors (32).NCR are important activating receptors for the antitumor and antiviral activities of NK cells (5, 32, 37). Heparan sulfate has been discussed previously as a cellular ligand for NKp46, NKp44, and NKp30 (9, 26, 27), and nuclear factor BAT3, which can be released from tumor cells under stress conditions, has been described as a cellular ligand for NKp30 (42). Ligands for NKp30 and NKp44 can be detected on the surfaces and in the intracellular compartments of several kinds of tumor cells (10). Moreover, a number of pathogen-derived NCR ligands have been reported. The hemagglutinin protein of influenza virus and the HN of Sendai virus can bind to NKp46 and NKp44 and activate NK cells (3, 24, 34). The pp65 protein of human cytomegalovirus has been shown to bind NKp30 and inhibit its function (4). Human immunodeficiency virus, vaccinia virus, and herpes simplex virus have also been shown to upregulate the expression of cellular NCR ligands in infected cells (13, 14, 62). The Plasmodium falciparum erythrocyte membrane protein 1 is involved in the NCR-mediated NK cell attack against infected erythrocytes (36). Furthermore, NKp46 recognizes cells infected with mycobacteria (22, 61), and NKp44 was recently reported to directly bind to the surfaces of mycobacteria and other bacteria (21).In this study, we investigated the expression of ligand structures for NCR and NKG2D on NDV-infected cells. We demonstrate that NDV HN proteins which are strongly expressed on NDV-infected tumor cells function as activating ligand structures for NKp44 and NKp46 but that cellular ligands for NKG2D are partially downregulated during NDV infection.  相似文献   
45.
Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism. LXR agonists have been shown to limit the cellular cholesterol content by inducing reverse cholesterol transport, increasing bile acid production, and inhibiting intestinal cholesterol absorption. Most of them, however, also increase lipogenesis via sterol regulatory element-binding protein-1c (SREBP1c) and carbohydrate response element-binding protein activation resulting in hypertriglyceridemia and liver steatosis. We report on the antiatherogenic properties of the steroidal liver X receptor agonist N,N-dimethyl-3beta-hydroxy-cholenamide (DMHCA) in apolipoprotein E (apoE)-deficient mice. Long-term administration of DMHCA (11 weeks) significantly reduced lesion formation in male and female apoE-null mice. Notably, DMHCA neither increased hepatic triglyceride (TG) levels in male nor female apoE-deficient mice. ATP binding cassette transporter A1 and G1 and cholesterol 7alpha-hydroxylase mRNA abundances were increased, whereas SREBP1c mRNA expression was unchanged in liver, and even decreased in macrophages and intestine. Short-term treatment revealed even higher changes on mRNA regulation. Our data provide evidence that DMHCA is a strong candidate as therapeutic agent for the treatment or prevention of atherosclerosis, circumventing the negative side effects of other LXR agonists.  相似文献   
46.
47.
Oxidative modification of Trigonopsis variabilisd-amino acid oxidase in vivo is traceable as the conversion of Cys108 into a stable cysteine sulfinic acid, causing substantial loss of activity and thermostability of the enzyme. To simulate native and modified oxidase each as a microheterogeneity-resistant entity, we replaced Cys108 individually by a serine (C108S) and an aspartate (C108D), and characterized the purified variants with regard to their biochemical and kinetic properties, thermostability, and reactivity towards oxidation by hypochlorite. Tandem MS analysis of tryptic peptides derived from a hypochlorite-treated inactive preparation of recombinant wild-type oxidase showed that Cys108 was converted into cysteine sulfonic acid, mimicking the oxidative modification of native enzyme as isolated. Colorimetric titration of protein thiol groups revealed that in the presence of ammonium benzoate (0.12 mM), the two muteins were not oxidized at cysteines whereas in the wild-type enzyme, one thiol group was derivatized. Each site-directed replacement caused a conformational change in d-amino acid oxidase, detected with an assortment of probes, and resulted in a turnover number for the O2-dependent reaction with D-Met which in comparison with the corresponding wild-type value was decreased two- and threefold for C108S and C108D, respectively. Kinetic analysis of thermal denaturation at 50 °C was used to measure the relative contributions of partial unfolding and cofactor dissociation to the overall inactivation rate in each of the three enzymes. Unlike wild-type, C108S and C108D released the cofactor in a quasi-irreversible manner and were therefore not stabilized by external FAD against loss of activity. The results support a role of the anionic side chain of Cys108 in the fine-tuning of activity and stability of d-amino acid oxidase, explaining why C108S was a surprisingly poor mimic of the native enzyme.  相似文献   
48.
Glycogen synthase kinase-3beta (GSK-3beta) is a key component of several signaling pathways. We found that a short variant of 'TNF-like weak inducer of apoptosis' (shortTWEAK) formed a complex with GSK-3beta in a yeast two-hybrid system. We demonstrate that shortTWEAK and GSK-3beta colocalize in the nucleus of human neuroblastoma cells. We also show that TWEAK is internalized in different cell lines and that it translocates to the nucleus. This event causes the degradation of IkappaBalpha, the nuclear translocation of both GSK-3beta and p65, and the induction of NF-kappaB-driven gene expression. We demonstrate that the induction of IL-8 expression by TWEAK can be counteracted by LiCl. Taken together, these data suggest that GSK-3beta plays an important role in the signal transduction pathway between TWEAK and NF-kappaB.  相似文献   
49.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   
50.
Minor histocompatibility Ags elicit cell-mediated immune responses and graft rejection in individuals receiving MHC-matched tissues. H60 represents a dominant Ag that elicits a strong CTL response in C57BL/6 mice immunized against BALB.B. An 8-aa peptide in the H60 protein is presented by H-2K(b) and this is recognized by the TCR as an alloantigen. The intact H60 glycoprotein is a ligand for the costimulatory NKG2D receptor that is expressed by activated CD8(+) T cells. Thus, H60 may provide both an allogeneic peptide and its own costimulation. We show that mutation of an H-2K(b)-binding anchor residue in the H60 peptide completely abrogates binding of H60 glycoprotein to NKG2D and a synthetic H60 peptide partially blocks the binding of NKG2D to its ligand. Ligands of the human NKG2D receptor are remarkably polymorphic, suggesting that these may also serve as minor histocompatibility Ags.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号