首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   58篇
  821篇
  2022年   6篇
  2021年   25篇
  2020年   6篇
  2019年   7篇
  2018年   16篇
  2017年   11篇
  2016年   20篇
  2015年   34篇
  2014年   38篇
  2013年   60篇
  2012年   72篇
  2011年   58篇
  2010年   31篇
  2009年   25篇
  2008年   37篇
  2007年   37篇
  2006年   35篇
  2005年   43篇
  2004年   31篇
  2003年   35篇
  2002年   29篇
  2001年   11篇
  2000年   10篇
  1999年   11篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   18篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1977年   2篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1971年   4篇
  1967年   4篇
  1966年   2篇
排序方式: 共有821条查询结果,搜索用时 12 毫秒
91.
Ohne Zusammenfassung Mit 22 Textabbildungen.  相似文献   
92.
Acetylcholine treatment of [3H]inositol pre-labelled cultured chick embryo myotubes results in the stimulation of phosphatidylinositol breakdown, as shown by the measurement of inositol-1-phosphate accumulating in the presence of lithium. The described effect is dependent on agonist concentration and incubation time, and is inhibited by tubocurarine and alpha-bungarotoxin. The activation of phosphatidylinositol breakdown by acetylcholine at extrajunctional nicotinic receptors is likely to be involved in the modulation of the functional activity of the receptor.  相似文献   
93.
The CASP experiment has been run every other year since 1994. Its objective is to subject the available structure prediction methods to a blind test. This is a short report of the highlights of its last edition. 'Men who wish to know about the world must learn about it in its particular details' (Heraclitus of Ephesus, 535-475 bc).  相似文献   
94.
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.  相似文献   
95.
In terrestrial snakes, rugose scales are uncommon and (if they occur) generally are found on both sexes. In contrast, rugose scales are seen in most sea snakes, especially in males. Why has marine life favored this sex-specific elaboration of scale rugosity? We pose and test alternative hypotheses about the function of rugose scales in males of the turtle-headed sea snake (Emydocephalus annulatus) and conclude that multiple selective forces have been involved. First, rugosities may aid male positioning during courtship, because histology shows that tubercles are more highly innervated than adjacent flat areas of each scale and hence are presumably more sensitive to tactile cues, and because biomechanical tests show that rugosities enhance friction between the bodies of males and females. Second, the occurrence of rugosities over the entire body of males and (albeit less well developed) in females as well suggests that rugosities also play a hydrodynamic role by modifying water flow across the snake's surface. Flow tank tests show that rugosities reduce the thickness of the boundary layer by almost 50% and create turbulent flow that should massively enhance rates of cutaneous oxygen uptake and hence prolong maximal courtship duration by males.  相似文献   
96.
97.
Gallium phosphide exhibits a short diffusion length relative to its optical absorption length, and is thus a candidate for use in wire array geometries that allow light absorption to be decoupled from minority carrier collection. Herein is reported the photoanodic performance of heteroepitaxially grown gallium phosphide on planar and microwire‐array Si substrates. The n‐GaP|n‐Si heterojunction results in a favorable conduction band alignment for electron collection in the silicon. A conformal electrochemical contact to the outer GaP layer is produced using the ferrocenium/ferrocene (Fc+/Fc) redox couple in acetonitrile. Photovoltages of ~750 mV under 1 sun illumination are observed and are attributed to the barrier formed at the (Fc+/Fc)|n‐GaP junction. The short‐circuit current densities of the composite microwire‐arrays are similar to those observed using single‐crystal n‐GaP photoelectrodes. Spectral response measurements along with a finite‐difference‐time‐domain optical model indicate that the minority carrier diffusion length in the GaP is ~80 nm. Solid‐state current–voltage measurements show that shunting occurs through thin GaP layers that are present near the base of the microwire‐arrays. The results provide guidance for further studies of 3D multi‐junction photoelectrochemical cells.  相似文献   
98.
99.
100.
Skeletal muscle has a remarkable capacity to regenerate after mechanical or pathological injury. We show that the V1a receptor (V1aR) for vasopressin, a potent myogenic-promoting factor that stimulates differentiation and hypertrophy in vitro, is expressed in mouse skeletal muscle and modulated during regeneration after experimental injury. We used gene delivery by electroporation to overexpress the myc-tagged vasopressin V1aR in specific muscles, thus sensitizing them to circulating vasopressin. The correct localization on the surface of the fibers of the recombinant product was demonstrated by confocal immunofluorescence directed against the myc tag. V1aR overexpression dramatically enhanced regeneration. When compared with mock-transfected controls, V1aR overexpressing muscles exhibited significantly accelerated activation of satellite cells and increased expression of differentiation markers. Downstream of V1aR activation, calcineurin was strongly up-regulated and stimulated the expression of IL-4, a potent mediator of myogenic cell fusion. The central role of calcineurin in mediating V1aR-dependent myogenesis was also demonstrated by using its specific inhibitor, cyclosporine A. This study identifies skeletal muscle as a physiological target of hormones of the vasopressin family and reveals a novel in vivo role for vasopressin-dependent pathways. These findings unveil several steps, along a complex signaling pathway, that may be exploited as potential targets for the therapy of diseases characterized by altered muscle homeostasis and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号