首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   50篇
  638篇
  2023年   2篇
  2022年   3篇
  2021年   18篇
  2020年   5篇
  2019年   4篇
  2018年   14篇
  2017年   11篇
  2016年   14篇
  2015年   25篇
  2014年   34篇
  2013年   49篇
  2012年   56篇
  2011年   45篇
  2010年   23篇
  2009年   25篇
  2008年   37篇
  2007年   28篇
  2006年   33篇
  2005年   31篇
  2004年   25篇
  2003年   29篇
  2002年   26篇
  2001年   8篇
  1999年   9篇
  1998年   3篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1974年   2篇
  1966年   4篇
  1959年   1篇
  1954年   1篇
  1953年   1篇
  1940年   1篇
  1920年   1篇
  1902年   1篇
排序方式: 共有638条查询结果,搜索用时 15 毫秒
101.
Adele Post 《Polar Biology》1990,10(4):241-245
Summary Variation in leaf pigmentation from green to ginger is observed for Ceratodon purpureus (Hedw.) Brid. in Antarctica. Electron microscopy of ginger and green leaves reveals less thylakoid stacking, a response to greater light exposure, in the ginger leaves. In extremely exposed sites C. purpureus has low chlorophyll a/b ratios which correlate with decreased 77K chlorophyll fluorescence, indicating damage to chlorophyll a. Pigment analysis of ginger moss shows that even when the chlorophyll a/b ratio has not decreased the pigment composition differs from green moss. The increase in anthocyanin and decrease in chlorophyll concentrations largely account for the visual change from green to ginger. The ratio of total carotenoid to chlorophyll varies from 0.35 in green moss to 0.55 in the ginger moss, with violaxanthin increased preferentially. Since these changes in pigmentation are consistent with photoprotection and they are linked to light dependent variations in chloroplast structure, it appears that photoprotective pigments are a useful adaptation for the bright Antarctic environment.  相似文献   
102.
Integral membrane proteins perform crucial cellular functions and are the targets for the majority of pharmaceutical agents. However, the hydrophobic nature of their membrane-embedded domains makes them difficult to work with. Here, we describe a shotgun proteomic method for the high-throughput analysis of the membrane-embedded transmembrane domains of integral membrane proteins which extends the depth of coverage of the membrane proteome.  相似文献   
103.
104.
Members of the ADAM (a disintegrin and metalloproteinase) family of proteins possess a multidomain architecture which permits functionalities as adhesion molecules, signalling intermediates and proteolytic enzymes. ADAM8 is found on immune cells and is induced by multiple pro-inflammatory stimuli suggesting a role in inflammation. Here we describe an activation mechanism for recombinant human ADAM8 that is independent from classical PC (pro-protein convertase)-mediated activation. N-terminal sequencing revealed that, unlike other ADAMs, ADAM8 undergoes pre-processing at Glu(158), which fractures the Pro (pro-segment)-domain before terminal activation takes place to remove the putative cysteine switch (Cys(167)). ADAM8 lacking the DIS (disintegrin) and/or CR (cysteine-rich) and EGF (epidermal growth factor) domains displayed impaired ability to complete this event. Thus pre-processing of the Pro-domain is co-ordinated by DIS and CR/EGF domains. Furthermore, by placing an EK (enterokinase) recognition motif between the Pro- and catalytic domains of multiple constructs, we were able to artificially remove the pro-segment prior to pre-processing. In the absence of pre-processing of the Pro-domain a marked decrease in specific activity was observed with the autoactivated enzyme, suggesting that the Pro-domain continued to associate and inhibit active enzyme. Thus, pre-processing of the Pro-domain of human ADAM8 is important for enzyme maturation by preventing re-association of the pro-segment with the catalytic domain. Given the observed necessity of DIS and CR/EGF for pre-processing, we conclude that these domains are crucial for the proper activation and maturation of human ADAM8.  相似文献   
105.
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri × Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
106.
Cells within human skin are exposed to mechanical stretching that is considered a trigger stimulus for keratinocyte proliferation, while its effect on keratinocyte migration has been poorly investigate. In order to explore the effect of stretching on keratinocyte migration spontaneously immortalized human keratinocyte (HaCaT) monolayers seeded onto collagen I-coated silicon sheets were stimulated three times for 1 hour every 24 hours (total time = 72 hours) by mechanical stretching increasing substrate deformations (10%) applied both as static (0 Hz) and cyclic (0.17 Hz) uniaxial stretching. At the end of stimulations monolayer areas measured in both static and cyclic samples appeared reduced and strongly oriented in a direction perpendicular to the stress direction compared to unstimulated ones. Moreover during the mechanical stimulation period HaCaT monolayers strongly increased the release in the medium of matrix metalloproteinase 9 (MMP-9), a proteolytic enzyme necessary for keratinocyte migration.Key words: keratinocyte, mechanical stretching, migration, MMP-9, MMP-2  相似文献   
107.
108.
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.  相似文献   
109.

Background

Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies.

Results

We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation.First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce.We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images.

Conclusions

FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0431-x) contains supplementary material, which is available to authorized users.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号