首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   25篇
  国内免费   3篇
  2024年   1篇
  2023年   4篇
  2022年   22篇
  2021年   32篇
  2020年   14篇
  2019年   14篇
  2018年   21篇
  2017年   18篇
  2016年   25篇
  2015年   15篇
  2014年   27篇
  2013年   62篇
  2012年   37篇
  2011年   39篇
  2010年   29篇
  2009年   23篇
  2008年   31篇
  2007年   29篇
  2006年   42篇
  2005年   26篇
  2004年   19篇
  2003年   27篇
  2002年   17篇
  2001年   10篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1978年   5篇
  1973年   2篇
  1962年   2篇
  1960年   1篇
  1955年   1篇
  1953年   1篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
531.
A pot experiment was conducted to determine the effects of the application of 13C (1.256 atom%) and 15N (1.098 atom%) dual-labeled maize residue compost (MRC) on the nitrogen and carbon uptake by radish, komatsuna, and chingensai as compared with the effect of inorganic fertilizer (IF). The vegetables were grown over three consecutive growing seasons over 4 months; compost was applied at the rate of 24 g kg–1 soil. Nonlabeled nitrogen fertilizer was applied to the compost treatments in the second and third crops to compare the effects of blends of compost with N fertilizer to fertilizer alone. The N uptake and yield of vegetables were significantly higher with the recommended inorganic N treatment. The vegetables took up significantly (P < 0.05) lower amounts of N from MRC than from IFs during the three cultivations. The values of the N uptake derived by fertilizer application to the plant exhibited significant differences among different vegetables. Nitrogen recovered by komatsuna and chingensai from MRC was 7.3 (6.6%), 2.7 (1.8%), and 2.3, (1.7%) in the first, second, and third crops, respectively. Radish, komatsuna, and chingensai recovered significant amounts of C from MRC in the first and second crops, with negligible C recovery in the third crop. The initial loss of fertilizer C in soil at the first crop indicates that the microbial decomposition decoupled substantial amounts of 13C/15N-labeled compounds early in plant development, thus giving the microorganisms a preemptive competitive advantage in the acquisition of easily available 13C/15N-labeled substrates. It is concluded that a combination of compost and inorganic N did not supply sufficient plant-available N to increase vegetables yields or N uptake over those of fertilizer alone. The data suggested that higher productivity of vegetables might be achieved after the accumulation of a certain amount of residual compost N.  相似文献   
532.
533.
Helicobacter pylori persistently colonize the human stomach and have been linked to atrophic gastritis and gastric carcinoma. Although it is well known that H. pylori infection can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood. Here we show that VacA permeabilizes the apical membrane of gastric parietal cells and induces hypochlorhydria. The functional consequences of VacA infection on parietal cell physiology were studied using freshly isolated rabbit gastric glands and cultured parietal cells. Secretory activity of parietal cells was judged by an aminopyrine uptake assay and confocal microscopic examination. VacA permeabilization induces an influx of extracellular calcium, followed by activation of calpain and subsequent proteolysis of ezrin at Met(469)-Thr(470), which results in the liberation of ezrin from the apical membrane of the parietal cells. VacA treatment inhibits acid secretion by preventing the recruitment of H,K-ATPase-containing tubulovesicles to the apical membrane of gastric parietal cells. Electron microscopic examination revealed that VacA treatment disrupts the radial arrangement of actin filaments in apical microvilli due to the loss of ezrin integrity in parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of VacA. Proteolysis of ezrin in VacA-infected parietal cells is a novel mechanism underlying H. pylori-induced inhibition of acid secretion. Our results indicate that VacA disrupts the apical membrane-cytoskeletal interactions in gastric parietal cells and thereby causes hypochlorhydria.  相似文献   
534.
535.
Urotensin-II and cardiovascular remodeling   总被引:2,自引:0,他引:2  
Urotensin-II (U-II), a cyclic undecapeptide, and its receptor, UT, have been linked to vascular and cardiac remodeling. In patients with coronary artery disease (CAD), it has been shown that U-II plasma levels are significantly greater than in normal patients and the severity of the disease is increased proportionally to the U-II plasma levels. We showed that U-II protein and mRNA levels were significantly elevated in the arteries of patients with coronary atherosclerosis in comparison to healthy arteries. We observed U-II expression in endothelial cells, foam cells, and myointimal and medial vSMCs of atherosclerotic human coronary arteries. Recent studies have demonstrated that U-II acts in synergy with mildly oxidized LDL inducing vascular smooth muscle cell (vSMC) proliferation. Additionally, U-II has been shown to induce cardiac fibrosis and cardiomyocyte hypertrophy leading to cardiac remodeling. When using a selective U-II antagonist, SB-611812, we demonstrated a decrease in cardiac dysfunction including a reduction in cardiomyocyte hypertrophy and cardiac fibrosis. These findings suggest that U-II is undoubtedly a potential therapeutic target in treating cardiovascular remodeling.  相似文献   
536.
IgA is unique in being able to form a diverse range of polymeric structures. Increases in the levels of dimeric IgA1 (dIgA1) in serum have been implicated in diseases such as IgA nephropathy. We have determined the solution structure for dIgA1 by synchrotron x-ray and neutron scattering and analytical ultracentrifugation. The Guinier radius of gyration (RG) of 7.60-8.65 nm indicated that the two monomers within dIgA1 are arranged in an extended conformation. The distance distribution curve P(r) gave an overall length (L) of 22-26 nm. These results were confirmed by the sedimentation coefficient and frictional ratio of dIgA1. Constrained scattering modeling starting from the IgA1 monomer solution structure revealed a near-planar dimer structure for dIgA1. The two Fc regions form a slightly bent arrangement in which they form end-to-end contacts, and the J chain was located at this interface. This structure was refined by optimizing the position of the four Fab regions. From this, the best-fit solution structures show that the four Fab Ag-binding sites are independent of one another, and the two Fc regions are accessible to receptor binding. This arrangement allows dIgA1 to initiate specific immune responses by binding to FcalphaRI receptors, while still retaining Ag-binding ability, and to be selectively transported to mucosal surfaces by binding to the polymeric Ig receptor to form secretory IgA. A mechanism for the involvement of dIgA1 oligomers in the pathology of IgA nephropathy is discussed in the light of this near-planar structure.  相似文献   
537.
The rapid rise in antibiotic-resistant Gram-positive bacterial infections prompted us to explore the development of novel strategies for synthesis of large chemical libraries amenable to high-throughput screening for antimicrobial activities. Here we report the solid-phase synthesis of a 738,192 member pyrrolidine bis-cyclic guanidine chemical library with 26 different amino acids at three positions of diversity and 42 carboxylic acids at the fourth position. This synthetic combinatorial library was developed for positional scanning and screened for bacteriostatic and bactericidal activities against the important human pathogen methicillin-resistant Staphylococcus aureus (MRSA). The eight compound mixtures exhibiting bactericidal activity (10 microg/mL) against MRSA were used to direct the synthesis of 36 individual compounds that were then screened for activity against MRSA, vancomycin-resistant Enterococcus faecalis (VRE), and two Gram-negative bacterial species. At least 20 individual compounds were bactericidal for MRSA at 2.5 microg/mL, with a subset of these compounds showing bactericidal activities (10 microg/mL) against the other species tested. This approach demonstrates the capability to synthesize and screen a complex library to yield promising antimicrobials that address a critical need for novel infectious disease therapeutics.  相似文献   
538.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   
539.
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins. This enzyme oxidizes the C-15 hydroxyl group of prostaglandins and lipoxins to produce 15-keto metabolites which exhibit greatly reduced biological activities. A three-dimensional (3D) structure of 15-PGDH based on the crystal structures of the levodione reductase and tropinone reductase-II was generated and used for docking study with NAD+ coenzyme and PGE2 substrate. Three well-conserved residues among SDR family which correspond to Ser-138, Tyr-151, and Lys-155 of 15-PGDH have been shown to participate in the catalytic reaction. Based on the molecular interactions observed from 3D structure of 15-PGDH, we further propose that Gln-148 in 15-PGDH is important in properly positioning the 15-hydroxyl group of PGE2 by hydrogen bonding with the side-chain oxygen atom of Gln-148. This residue is found to be less conserved and replaceable by glutamyl, histidinyl, and asparaginyl residues in SDR family. Accordingly, site-directed mutagenesis of Gln-148 of 15-PGDH to alanine, glutamic acid, histidine, and asparagine (Q148A, Q148E, Q148H, and Q148N) was carried out. The activity of mutant Q148A was not detectable, whereas those of mutants Q148E, Q148H, and Q148N were comparable to or higher than the wild type. This indicates that the side-chain oxygen or nitrogen atom at position 148 of 15-PGDH plays an important role in anchoring C-15 hydroxyl group of PGE2 through hydrogen bonding for catalytic reaction.  相似文献   
540.
A variety of bis[3-aryl-4,5-dihydro-1H-pyrazol-1-carboxaldehydes] 4a-h were obtained via reaction of bis[1-aryl-2-propen-1-ones] 3a-h with hydrazine hydrate in refluxing formic acid. In addition, the corresponding bis[1-acetyl-3-aryl-4,5-dihydro-1H-pyrazoles] 4i-m were formed through conducting the reaction of 3 with hydrazine hydrate in refluxing acetic acid. The starting bis(2-propen-1-ones) 3a-h were prepared stereoselectively as E,E'-geometric isomer via condensation of bisbenzaldehydes 1a,b with (un)substituted acetophenones 2 in ethanolic KOH solution. Anti-inflammatory as well as ulcerogenic activities of the prepared pyrazolines were evaluated in vivo and compared with that of a standard drug (indomethacin). Many of the tested compounds show remarkable anti-inflammatory properties with an ulcerogenic liability (especially 4f, g, j, and k) lower than that of the standard used drug. Compound 4f was established to be the best effectively prepared anti-inflammatory active pyrazoline derivative and safer than indomethacin with respect to its ulcerogenic liability. Molluscicidal activity of the prepared compounds against Biomphalaria alexandrina snails (the intermediate host of Schistosoma mansoni) was screened. Where, some of the prepared compounds show considerable activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号