首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   44篇
  国内免费   1篇
  795篇
  2022年   10篇
  2021年   21篇
  2020年   8篇
  2019年   15篇
  2018年   23篇
  2017年   17篇
  2016年   33篇
  2015年   37篇
  2014年   39篇
  2013年   47篇
  2012年   55篇
  2011年   45篇
  2010年   24篇
  2009年   20篇
  2008年   44篇
  2007年   29篇
  2006年   26篇
  2005年   18篇
  2004年   16篇
  2003年   15篇
  2002年   18篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   13篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1975年   7篇
  1974年   9篇
  1973年   11篇
  1972年   5篇
  1971年   4篇
  1969年   3篇
排序方式: 共有795条查询结果,搜索用时 0 毫秒
51.
Our understanding of the PE/PPE family of proteins in M. tuberculosis (Mtb) pathogenesis is still evolving and their critical roles in the host immunomodulation are still in the discovery process. Earlier studies from our group have shown that TLR2-LRR domain plays an important role in regulating cytokine signalling by PPE proteins. The importance of TLR2-LRR domain 16–20 in the regulation of PPE17-induced pro-inflammatory signalling has been established recently. However, it is yet to find whether other PPE protein also targets the TLR2-LRR 16–20 domain for induction of pro-inflammatory responses. In the current study, we have explored the structural parameters and possible role of PPE65 in generating pro-inflammatory signalling molecules mediated through IRAK3 downstream of TLR2-LRR domain 16–20. This study conceptualizes the functional characteristics of PPE65 in infection condition and might possibly provide valuable information in exploring this protein as an immunomodulator in Mtb infection.  相似文献   
52.
Microsomal glucose-6-phosphatase-alpha (G6Pase-alpha) and glucose 6-phosphate transporter (G6PT) work together to increase blood glucose concentrations by performing the terminal step in both glycogenolysis and gluconeogenesis. Deficiency of the G6PT in liver gives rise to glycogen storage disease type 1b (GSD1b), whereas deficiency of G6Pase-alpha leads to GSD1a. G6Pase-alpha shares its substrate (glucose 6-phosphate; G6P) with hexose-6-phosphate-dehydrogenase (H6PDH), a microsomal enzyme that regenerates NADPH within the endoplasmic reticulum lumen, thereby conferring reductase activity upon 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). 11beta-HSD1 interconverts hormonally active C11beta-hydroxy steroids (cortisol in humans and corticosterone in rodents) to inactive C11-oxo steroids (cortisone and 11-dehydrocorticosterone, respectively). In vivo reductase activity predominates, generating active glucocorticoid. We hypothesized that substrate (G6P) availability to H6PDH in patients with GSD1b and GSD1a will decrease or increase 11beta-HSD1 reductase activity, respectively. We investigated 11beta-HSD1 activity in GSD1b and GSD1a mice and in two patients with GSD1b and five patients diagnosed with GSD1a. We confirmed our hypothesis by assessing 11beta-HSD1 in vivo and in vitro, revealing a significant decrease in reductase activity in GSD1b animals and patients, whereas GSD1a patients showed a marked increase in activity. The cellular trafficking of G6P therefore directly regulates 11beta-HSD1 reductase activity and provides a novel link between glucose metabolism and function of the hypothalamo-pituitary-adrenal axis.  相似文献   
53.
The bowman-birk type trypsin inhibitors accumulate in high concentration in legume and cereal seeds, especially during seed maturation and are considered to be involved in insect tolerance. The 5′ flanking sequences of the trypsin inhibitor was isolated from cowpea genomic DNA using anchor PCR. Analysis of sequences showed presence of seed specific RY elements and also other elements associated with seed development such as abscisic acid responsive elements (ABA responsive elements; ABRE) and dehydration responsive elements (DRE). Spatial and temporal control of the promoter driven expression pattern was analyzed using gus as reporter. Expression was found to occur both in embryo and endosperm; starting from torpedo stage of embryogenesis and continuing till the stage of final maturation i.e. bent cotyledon stage. Additional expression analyses showed that the promoter actually drives expression in tissues like leaves, roots, stipules, etc., but followed a specific pattern. Comparative analysis of expression in seeds and other organs indicated that the promoter driven expression is in response to cellular maturation.  相似文献   
54.
BackgroundSeveral developing countries like Pakistan step into Sustainable Development Goals period with crucial maternal and child health needs that need to be addressed for improving health outcomes among people. We aim to explore existent socio-economic disparities in use of family planning methods (FPM) among Pakistani women, and compare any such inequalities between the years 2006 and 2013.SettingPakistan Demographic and Health Surveys (PDHS) 2006–7 (n = 9177) and the most recent 2012–13(n = 13558) data were used to conduct secondary analysis. Participants were ever married women aged between 15 and 49 years. Socio-economic status was assessed by the education level and wealth index. Inequalities were measured through Odds Ratio (OR), Relative Index of inequality (RII), and Slope index of inequality (SII) on non-use of FPM.ResultsAlthough the prevalence of FPM use has increased over time (28% in 2006 versus 54% in 2013), the socio-economic inequalities persistently exist. Comparing results of PDHS 2006 with PDHS 2013, education related absolute inequalities among urban dwellers increased from -0.41 (95% CI -0.67, -0.13, p-value < 0.01) to -0.83 (95% CI -1.02, -0.63, p-value < 0.01); and increased from -0.93 (95% CI -1.21, -0.64, p-value < 0.01) to -0.98 (95% CI -1.20, -0.76, p-value < 0.01) among rural dwellers. Similarly wealth related absolute inequalities are also existent.ConclusionsAlthough the FPM use has increased over time, but it is important to note that socio-economic gap in use of FPM persists. Such differences have disadvantaged the poor and the illiterate. Family planning programs may target the disadvantaged subgroups for ensuring well-being of women and children in Pakistan.  相似文献   
55.
Highlights? PGC-1 induces pigment formation in melanocytes ? PGC-1s activate expression of MITF ? α-MSH induces PGC-1s, which are required for induction of melanogenic genes ? eQTLs in human PGC-1β are associated with tanning ability and melanoma protection  相似文献   
56.
The strong biotin-streptavidin interaction limits the application of streptavidin as a reversible affinity matrix for purification of biotinylated biomolecules. To address this concern, a series of single, double, and triple streptavidin muteins with different affinities to biotin were designed. The strategy involves mutating one to three strategically positioned residues (Ser-45, Thr-90, and Asp-128) that interact with biotin and other framework structure-maintaining residues of streptavidin. The muteins were produced in soluble forms via secretion from Bacillus subtilis. The impact of individual residues on the overall structure of streptavidin is reflected by the formation of monomeric streptavidin to different extents. Of the three targeted residues, Asp-128 has the most dramatic effect (Asp-128 > Thr-90 > Ser-45). Conversion of all three targeted residues to alanine results in a soluble biotin binding mutein that exists 100% in the monomeric state. Both wild-type and mutated (monomeric and tetrameric) streptavidin proteins were purified, and their kinetic parameters (on- and off-rates) were determined using a BIAcore biosensor with biotin-conjugated bovine serum albumin immobilized to the sensor chip. This series of muteins shows a wide spectrum of affinity toward biotin (K(d) from 10(-6) to 10(-11) m). Some of them have the potential to serve as reversible biotin binding agents.  相似文献   
57.
Transforming growth factor beta1 (TGF-beta1) stimulates cartilage extracellular matrix synthesis but, in excess, evokes synovial inflammation, hyperplasia, and osteophyte formation in arthritic joints. TGF-beta1 induces tissue inhibitor of metalloproteinases 3 (TIMP-3), an inhibitor of cartilage-damaging matrix metalloproteianases and aggrecanases. We investigated the role of reactive oxygen species (ROS) in TIMP-3 induction by TGF-beta1. In primary human and bovine chondrocytes, ROS scavenger and antioxidant N-acetylcysteine (NAC) inhibited TGF-beta1-induced TIMP-3 mRNA and protein increases. Ebselen and ascorbate also reduced this induction. TGF-beta1 time-dependently induced ROS production that was suppressed by NAC. Hydrogen peroxide, a ROS, induced TIMP-3 RNA. The TIMP-3 increase induced by TGF-beta1 was partly Smad2-dependent. TGF-beta1-stimulated Smad2 phosphorylation was inhibited by NAC. Reduced glutathione and L-cysteine also blocked Smad2 and TIMP-3 induction by TGF-beta1, whereas a nonthiol, N-acetylalanine, did not. Smad2 was not activated by H2O2. Smad2 phosphorylation was independent, and TIMP-3 expression was dependent, on new protein synthesis. TGF-beta-stimulated ERK and JNK phosphorylation was also inhibited by NAC. However, inhibitory actions of NAC were not mediated by ERK activation. Thus, ROS mediate TGF-beta1-induced TIMP-3 gene expression. Blocking TGF-beta1-induced gene expression by modulating cellular redox status with thiols can be potentially beneficial for treating arthritic and other disorders caused by excessive TGF-beta1.  相似文献   
58.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   
59.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   
60.
In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y., Cafferty, P. W., Sobue, K., Agarwal-Mawal, A., Neufield, K. D., and Paudel, H. K. (2002) J. Biol. Chem. 277, 11933-11940). In this study, we find that when purified brain microtubules are subjected to Superose 12 gel filtration column chromatography, the dimeric scaffold protein 14-3-3 zeta co-elutes with the tau phosphorylation complex components tau and GSK3 beta. From gel filtration fractions containing the tau phosphorylation complex, 14-3-3 zeta, GSK3 beta, and tau co-immunoprecipitate with each other. From extracts of bovine brain, COS-7 cells, and HEK-293 cells transfected with GSK3 beta, 14-3-3 zeta co-precipitates with GSK3 beta, indicating that GSK3 beta binds to 14-3-3 zeta. From HEK-293 cells transfected with tau, GSK3 beta, and 14-3-3 zeta in different combinations, tau co-immunoprecipitates with GSK3 beta only in the presence of 14-3-3 zeta. In vitro, approximately 10-fold more tau binds to GSK3 beta in the presence of than in the absence of 14-3-3 zeta. In transfected HEK-293 cells, 14-3-3 zeta stimulates GSK3 beta-catalyzed tau phosphorylation in a dose-dependent manner. These data indicate that in brain, the 14-3-3 zeta dimer simultaneously binds and bridges tau and GSK3 beta and stimulates GSK3 beta-catalyzed tau phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号