首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  75篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
  1977年   1篇
  1874年   1篇
排序方式: 共有75条查询结果,搜索用时 0 毫秒
41.

Background  

Hypoxia-inducible factors (HIFs) are involved in adaptive and survival responses to hypoxic stress in mammals. In fish, very little is known about the functions of HIFs.  相似文献   
42.
43.
Nien PC  Lee CY  Ho KC  Adav SS  Liu L  Wang A  Ren N  Lee DJ 《Bioresource technology》2011,102(7):4742-4746
A two-chamber microbial fuel cell was started using iron-reducing strains as inoculum and acetate as carbon sources. The tested microbial fuel cell had an open-circuit voltage of 0.67 V, and reached 1045 mA m−2 and a power density of 486 mW m−2 at 0.46 V before power overshoot occurred. Anodic reactions were identified as the rate-determining steps. Stirring the anolyte insignificantly increased cell performance, suggesting a minimal external mass transfer resistance from the anolyte to the anodic biofilm. Data regression analysis indicates that charge transfer resistance at the biofilm-anode junction was negligible. The order of magnitude estimation of electrical conductance indicates that electron transfer resistance had an insignificant effect on microbial fuel cell performance. Resistance in electrogens for substrate utilization is proposed to induce microbial fuel cell power overshoot.  相似文献   
44.
iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The basidiomycete fungi such as Phanerochaete chrysosporium secrete large amount of hydrolytic and oxidative enzymes and degrade lignocellulosic biomass. The lignin depolymerizing proteins were extensively studied, but cellulose, hemicellulose and pectin hydrolyzing enzymes were poorly explored. In this study P. chrysosporium was grown in cellulose, lignin and mixture of cellulose and lignin, and secretory proteins were quantified by isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics using liquid chromatography tandem mass spectrometry (LC-MS/MS). An iTRAQ quantified 117 enzymes comprising cellulose hydrolyzing endoglucanases, exoglucanases, beta-glucosidases; hemicelluloses hydrolyzing xylanases, acetylxylan esterases, mannosidases, mannanases; pectin-degrading enzymes polygalacturonase, rhamnogalacturonase, arabinose and lignin degrading protein belonging to oxidoreductase family. Under cellulose and cellulose with lignin culture conditions, enzymes such as endoglucanases, exoglucanases, β-glucosidases and cellobiose dehydrogenase were significantly upregulated and iTRAQ data suggested hydrolytic and oxidative cellulose degradation. When lignin was used as a major carbon source, enzymes such as copper radical oxidase, isoamyl oxidase, glutathione S-transferase, thioredoxin peroxidase, quinone oxidoreductase, aryl alcohol oxidase, pyranose 2-oxidase, aldehyde dehydrogenase, and alcohol dehydrogenase were expressed and significantly regulated. This study explored cellulose, hemicellulose, pectin and lignin degrading enzymes of P. chrysosporium that are valuable for lignocellulosic bioenergy.  相似文献   
45.
Deamidation of asparaginyl residues in proteins produces a mixture of asparaginyl, n-aspartyl, and isoaspartyl residues, which affects the proteins' structure, function, and stability. Thus, it is important to identify and quantify the products to evaluate the effects in biological systems. It is still a challenging task to distinguish between the n-Asp and isoAsp deamidation products in a proteome-wide analysis because of their similar physicochemical properties. The quantification of the isomeric deamidated peptides is also rather difficult because of their coelution/poor separation in reverse-phase liquid chromatography (RPLC). We here propose a RP-ERLIC-MS/MS approach for separating and quantifying on a proteome-wide scale the three products related to deamidation of the same peptide. The key to the method is the use of RPLC in the first dimensional separation and ERLIC (electrostatic repulsion-hydrophilic interaction chromatography) in the second, with direct online coupling to tandem MS. The coelution of the three deamidation-related peptides in RPLC is then an asset, as they are collected in the same fraction. They are then separated and identified in the second dimension with ERLIC, which separates peptides on the basis of both pI and GRAVY values. The coelution of the three products in RPLC and their efficient separation in ERLIC were validated using synthetic peptides, and the performance of ERLIC-MS/MS was tested using peptide mixtures from two proteins. Applying this sequence to rat liver tissue, we identified 302 unique N-deamidated peptides, of which 20 were identified via all three deamidation-related products and 70 of which were identified via two of them.  相似文献   
46.
Despite decades of intensive research, there is still no effective treatment for ischemia/reperfusion (I/R) injury, an important corollary in the treatment of ischemic disease. I/R injury is initiated when the altered biochemistry of cells after ischemia is no longer compatible with oxygenated microenvironment (or reperfusion). To better understand the molecular basis of this alteration and subsequent incompatibility, we assessed the temporal and quantitative alterations in the cardiac proteome of a mouse cardiac I/R model by an iTRAQ approach at 30 min of ischemia, and at 60 or 120 min reperfusion after the ischemia using sham-operated mouse heart as the baseline control. Of the 509 quantified proteins identified, 121 proteins exhibited significant changes (p-value<0.05) over time and were mostly clustered in eight functional groups: Fatty acid oxidation, Glycolysis, TCA cycle, ETC (electron transport chain), Redox Homeostasis, Glutathione S-transferase, Apoptosis related, and Heat Shock proteins. The first four groups are intimately involved in ATP production and the last four groups are known to be important in cellular antioxidant activity. During ischemia and reperfusion, the short supply of oxygen precipitates a pivotal metabolic switch from aerobic metabolism involving fatty acid oxidation, TCA, and phosphorylation to anaerobic metabolism for ATP production and this, in turn, increases reactive oxygen species (ROS) formation. Therefore the implication of these 8 functional groups suggested that ischemia-reperfusion injury is underpinned in part by proteomic alterations. Reversion of these alterations to preischemia levels took at least 60 min, suggesting a refractory period in which the ischemic cells cannot adjust to the presence of oxygen. Therefore, therapeutics that could compensate for these proteomic alterations during this interim refractory period could alleviate ischemia-reperfusion injury to enhance cellular recovery from an ischemic to a normoxic microenvironment. Among the perturbed proteins, Park7 and Ppia were selected for further investigation of their functions under hypoxia. The results show that Park7 plays a key role in regulating antioxidative stress and cell survival, and Ppia may function in coping with the unfolded protein stress in the I/R condition.  相似文献   
47.
Aerobic granules effectively degrade phenol at high concentrations. This work cultivated aerobic granules that can degrade phenol at a constant rate of 49 mg-phenol/g x VSS/h up to 1,000 mg/L of phenol. Fluorescent staining and confocal laser scanning microscopy (CLSM) tests demonstrated that an active biomass was accumulated at the granule outer layer. A strain with maximum ability to degrade phenol and a high tolerance to phenol toxicity isolated from the granules was identified as Candida tropicalis via 18S rRNA sequencing. This strain degrades phenol at a maximum rate of 390 mg-phenol/g x VSS/h at pH 6 and 30 degrees C, whereas inhibitory effects existed at concentrations >1,000 mg/L. The Haldane kinetic model elucidates the growth and phenol biodegradation kinetics of the C. tropicalis. The fluorescence in situ hybridization (FISH) and CLSM test suggested that the Candida strain was primarily distributed throughout the surface layer of granule; hence, achieving a near constant reaction rate over a wide range of phenol concentration. The mass transfer barrier provided by granule matrix did not determine the reaction rates for the present phenol-degrading granule.  相似文献   
48.
Applied Biochemistry and Microbiology - Vit v 1 as a lipid-transfer protein is a major allergen of grapes (Vitis vinifera) that elicits food allergy in many patients in Iran. Todays, recombinant...  相似文献   
49.
Bioenergy, particularly biofuel, from lignocellulosic biomass has been considered as one of the most promising renewable and sustainable energies. The industrial productivity and efficiency of microbial lignocellulolytic enzymes for cellulosic biofuel applications are significantly affected by pH of culture condition. This study established and compared hydrolytic protein expression profiles of Trichoderma reesei QM6a, QM9414, RUT C30 and QM9414MG5 strains at different pH in cellulosic culture media. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of secretome of T. reesei cultured from pH 3.0-9.0 revealed significantly higher hydrolytic protein expressions at acidic pH. The Bray-Curtis similarity indices, clustering, and Shannon diversity index elucidated differences in protein secretion at different pHs in individuals and among the strains. This study demonstrated a comparative lignocellulolytic enzyme secretion profile of T. reesei and its mutants at different pHs and provides pH sensitive and resistance enzyme targets for industrial lignocellulose hydrolysis.  相似文献   
50.
The cDNAs encoding lactate dehydrogenase isozymes LDH-A (muscle) and LDH-B (heart) from alligator and turtle and LDH-A, LDH-B, and LDH-C (testis) from pigeon were cloned and sequenced. The evolutionary relationships among vertebrate LDH isozymes were analyzed. Contrary to the traditional belief that the turtle lineage branched off before the divergence between the lizard/alligator and bird lineages, the turtle lineage was found to be clustered with either the alligator lineage or the alligator-bird clade, while the lizard lineage was found to have branched off before the divergence between the alligator/turtle and bird lineages. The pigeon testicular LDH-C isozyme was evidently duplicated from LDH-B (heart), so it is not orthologous to the mammalian testicular LDH-C isozymes.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号