首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9783篇
  免费   905篇
  国内免费   1篇
  2023年   75篇
  2022年   126篇
  2021年   307篇
  2020年   150篇
  2019年   191篇
  2018年   254篇
  2017年   220篇
  2016年   349篇
  2015年   568篇
  2014年   612篇
  2013年   747篇
  2012年   808篇
  2011年   877篇
  2010年   520篇
  2009年   407篇
  2008年   612篇
  2007年   606篇
  2006年   473篇
  2005年   447篇
  2004年   422篇
  2003年   329篇
  2002年   310篇
  2001年   90篇
  2000年   80篇
  1999年   84篇
  1998年   68篇
  1997年   52篇
  1996年   48篇
  1995年   63篇
  1994年   43篇
  1993年   42篇
  1992年   41篇
  1991年   41篇
  1990年   43篇
  1989年   30篇
  1988年   34篇
  1987年   31篇
  1986年   30篇
  1985年   27篇
  1984年   46篇
  1983年   22篇
  1982年   23篇
  1981年   24篇
  1980年   18篇
  1978年   20篇
  1977年   21篇
  1976年   18篇
  1975年   20篇
  1974年   20篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
943.
944.
Many hypotheses have been advanced to explain the adaptive significance of the sphyrnid cephalofoil, including potential advantages of spacing the olfactory organs at the distal tips of the broad surface. We employed comparative morphology to test whether the sphyrnid cephalofoil provides better stereo-olfaction, increases olfactory acuity, and samples a greater volume of the medium compared to the situation in carcharhiniform sharks. The broadly spaced nares provide sphyrnid species with a significantly greater separation between the olfactory rosettes, which could lead to an enhanced ability to resolve odor gradients. In addition, most sphyrnid species possess prenarial grooves that greatly increase the volume of water sampled by the nares and thus increase the probability of odorant encounter. However, despite a much greater head width, and a significantly greater number of olfactory lamellae, scalloped hammerhead sharks do not possess a greater amount of olfactory epithelial surface area than the carcharhiniform sandbar sharks. Therefore, sphyrnid sharks might not possess any greater olfactory acuity than carcharhinids. Despite this, there are clear olfactory advantages to the cephalofoil head morphology that could have led to its evolution, persistence, and diversification. persistence, and diversification.  相似文献   
945.
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.  相似文献   
946.
Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P < 0.05). Upregulation of HO-1 expression by intermittent administration of cobalt protoporphyrin, an inducer of HO-1 protein and activity, resulted in a robust increase in EC-SOD but no significant change in Cu-Zn-SOD. Administration of tin mesoporphyrin, an inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.  相似文献   
947.
Although ischemia-induced late preconditioning (PC) is known to be mediated by inducible nitric oxide (NO) synthase (iNOS), the role of this enzyme in pharmacologically induced late PC remains unclear. We tested whether targeted disruption of the iNOS gene abrogates late PC elicited by three structurally different NO donors [diethylenetriamine/NO (DETA/NO), nitroglycerin (NTG), and S-nitroso-N-acetyl-penicillamine (SNAP)], an adenosine A1 receptor agonist [2-chloro-N6-cyclopentyladenosine (CCPA)], and a delta1-opioid receptor agonist (TAN-670). The mice were subjected to a 30-min coronary occlusion followed by 24 h of reperfusion. In iNOS knockout (iNOS-/-) mice, infarct size was similar to wild-type (WT) controls, indicating that iNOS does not modulate infarct size in the absence of PC. Pretreatment of WT mice with DETA/NO, NTG, SNAP, TAN-670, or CCPA 24 h before coronary occlusion markedly reduced infarct size. In iNOS-/- mice, however, the late PC effect elicited by DETA/NO, NTG, SNAP, TAN-670, and CCPA was completely abrogated. Furthermore, in WT mice pretreated with TAN-670 or CCPA, the selective iNOS inhibitor 1400W also abolished the delayed PC properties of these drugs; 1400W had no effect in WT mice. These data demonstrate that iNOS plays an obligatory role in NO donor-induced, adenosine A1 receptor agonist-induced, and delta1-opioid receptor agonist-induced late PC, underscoring the critical role of this enzyme as a common mediator of cardiac adaptations to stress.  相似文献   
948.
949.
950.
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf mutant stock are resistant, in vitro, to the cytotoxic effects of H(2)O(2), cadmium, UV light, paraquat, and heat. We show here that similar resistance profiles are seen in fibroblast cells derived from a related mutant, the Ames dwarf mouse, and that cells from growth hormone receptor-null mice are resistant to H(2)O(2), paraquat, and UV but not to cadmium. Resistance to UV light, cadmium, and H(2)O(2) are similar in cells derived from 1-wk-old Snell dwarf or normal mice, and thus the resistance of cell lines derived from young adult donors reflects developmental processes, presumably hormone dependent, that take place in the first few months of life. The resistance of cells from Snell dwarf mice to these stresses does not reflect merely antioxidant defenses: dwarf-derived cells are also resistant to the DNA-alkylating agent methyl methanesulfonate. Furthermore, inhibitor studies show that fibroblast resistance to UV light is unaffected by the antioxidants ascorbic acid and N-acetyl-L-cysteine. These data suggest that postnatal exposure to altered levels of pituitary hormones leads to development of cellular resistance to oxidative and nonoxidative stressors, which are stable through many rounds of in vitro cell division and could contribute to the remarkable disease resistance of long-lived mutant mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号