首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9619篇
  免费   888篇
  国内免费   1篇
  10508篇
  2023年   75篇
  2022年   126篇
  2021年   307篇
  2020年   149篇
  2019年   191篇
  2018年   255篇
  2017年   220篇
  2016年   348篇
  2015年   568篇
  2014年   609篇
  2013年   744篇
  2012年   805篇
  2011年   875篇
  2010年   518篇
  2009年   399篇
  2008年   609篇
  2007年   596篇
  2006年   470篇
  2005年   443篇
  2004年   412篇
  2003年   321篇
  2002年   305篇
  2001年   84篇
  2000年   76篇
  1999年   74篇
  1998年   65篇
  1997年   52篇
  1996年   46篇
  1995年   60篇
  1994年   40篇
  1993年   33篇
  1992年   33篇
  1991年   38篇
  1990年   37篇
  1989年   30篇
  1988年   31篇
  1987年   28篇
  1986年   28篇
  1985年   22篇
  1984年   42篇
  1983年   21篇
  1982年   15篇
  1981年   23篇
  1980年   15篇
  1978年   15篇
  1977年   20篇
  1976年   18篇
  1975年   19篇
  1974年   15篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Islam  M.D. Dhin  Price  Adam H.  Hallett  Paul D. 《Plant and Soil》2021,467(1-2):515-530
Plant and Soil - Cracks and biopores in compacted soil such as plough pans could aid deep rooting, mitigating constraints to seasonal upland use of paddy fields for rice production. This research...  相似文献   
102.
103.
The thiol-containing tripeptide glutathione is an important cellular constituent of many eukaryotic and prokaryotic cells. In addition to its disulfide reductase activity, glutathione is known to protect cells from many forms of physiological stress. This report represents the first investigation into the role of glutathione in the Gram-positive pathogen Streptococcus pneumoniae. We demonstrate that pneumococci import extracellular glutathione using the ABC transporter substrate binding protein GshT. Mutation of gshT and the gene encoding glutathione reductase (gor) increases pneumococcal sensitivity to the superoxide generating compound paraquat, illustrating the importance of glutathione utilization in pneumococcal oxidative stress resistance. In addition, the gshT and gor mutant strains are hypersensitive to challenge with the divalent metal ions copper, cadmium, and zinc. The importance of glutathione utilization in pneumococcal colonization and invasion of the host is demonstrated by the attenuated phenotype of the gshT mutant strain in a mouse model of infection.  相似文献   
104.
We examined the mechanisms underlying force feedback in cockroach walking by recording sensory and motor activities in freely moving animals under varied load conditions. Tibial campaniform sensilla monitor forces in the leg via strains in the exoskeleton. A subgroup (proximal receptors) discharge in the stance phase of walking. This activity has been thought to result from leg loading derived from body mass. We compared sensory activities when animals walked freely in an arena or on an oiled glass plate with their body weight supported. The plate was oriented either horizontally (70-75% of body weight supported) or vertically (with the gravitational vector parallel to the substrate). Proximal sensilla discharged following the onset of stance in all load conditions. In addition, activity was decreased in the middle third of the stance phase when the effect of body weight was reduced. Our results suggest that sensory discharges early in stance result from forces generated by contractions of muscles that press the leg as a lever against the substrate. These forces can unload legs already in stance and assure the smooth transition of support among the limbs. Force feedback later in stance may adjust motor output to changes in leg loading.  相似文献   
105.
Translation of psbA mRNA in Chlamydomonas reinhardtii chloroplasts is regulated by a redox signal(s). RB60 is a member of a protein complex that binds with high affinity to the 5'-untranslated region of psbA mRNA. RB60 has been suggested to act as a redox-sensor subunit of the protein complex regulating translation of chloroplast psbA mRNA. Surprisingly, cloning of RB60 identified high homology to the endoplasmic reticulum-localized protein disulfide isomerase, including an endoplasmic reticulum-retention signal at its carboxyl terminus. Here we show, by in vitro import studies, that the recombinant RB60 is imported into isolated chloroplasts of C. reinhardtii and pea in a transit peptide-dependent manner. Subfractionation of C. reinhardtii chloroplasts revealed that the native RB60 is partitioned between the stroma and the thylakoids. The nature of association of native RB60, and imported recombinant RB60, with thylakoids is similar and suggests that RB60 is tightly bound to thylakoids. The targeting characteristics of RB60 and the potential implications of the association of RB60 with thylakoids are discussed.  相似文献   
106.
Background: Microbes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness in terms of birth rate and death rate in a wide range of environments is critical for understanding microbial evolution and ecology. Methods: Here, using high-throughput time-lapse microscopy, we have quantified how Saccharomyces cerevisiae mutants incapable of synthesizing an essential metabolite (auxotrophs) grow or die in various concentrations of the required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell counting, and chemostat culturing. Results: For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support cell birth, but delay the onset of death phase and reduce the death rate compared to no lysine. In contrast, in low hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the sigmoidal-shaped Moser model than the well-known Monod model, while death rates can vary with metabolite concentration and time. Conclusions: Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial birth and death dynamics and to quantify growth rates in many environments.  相似文献   
107.
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell''s leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.  相似文献   
108.
109.
New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (<5–13 mg/L). For exposures in treatment solutions, we manipulated both conductivity (range 20–200 μS/cm) and calcium concentration (range <5–17.5 mg/L) in a factorial design. Response variables measured included mortality and reproductive output. Adult NZMS survived for long periods (>4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.  相似文献   
110.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号