首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10066篇
  免费   945篇
  国内免费   1篇
  11012篇
  2023年   75篇
  2022年   129篇
  2021年   310篇
  2020年   149篇
  2019年   194篇
  2018年   256篇
  2017年   221篇
  2016年   350篇
  2015年   573篇
  2014年   620篇
  2013年   752篇
  2012年   818篇
  2011年   892篇
  2010年   521篇
  2009年   405篇
  2008年   616篇
  2007年   622篇
  2006年   481篇
  2005年   461篇
  2004年   423篇
  2003年   343篇
  2002年   320篇
  2001年   94篇
  2000年   96篇
  1999年   86篇
  1998年   76篇
  1997年   61篇
  1996年   52篇
  1995年   73篇
  1994年   55篇
  1993年   34篇
  1992年   50篇
  1991年   48篇
  1990年   46篇
  1989年   43篇
  1988年   39篇
  1987年   36篇
  1986年   37篇
  1985年   30篇
  1984年   47篇
  1983年   31篇
  1981年   28篇
  1978年   26篇
  1977年   22篇
  1976年   26篇
  1975年   32篇
  1974年   22篇
  1973年   23篇
  1972年   21篇
  1970年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
112.
New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (<5–13 mg/L). For exposures in treatment solutions, we manipulated both conductivity (range 20–200 μS/cm) and calcium concentration (range <5–17.5 mg/L) in a factorial design. Response variables measured included mortality and reproductive output. Adult NZMS survived for long periods (>4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.  相似文献   
113.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
114.
NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5). We determined that the C5 cell clone has an average of 4 x 105 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6–6x105 molecules per cell) yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.  相似文献   
115.
116.

Introduction

Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model.

Materials and Methods

30 adult female Merino sheep (n = 8–12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed.

Results

No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%.

Conclusions

Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies.  相似文献   
117.
118.

Objective

The rs10757278, rs1333049 and rs4977574 are single nucleotide polymorphisms (SNPs) of chromosome 9p21 locus associated with a prevalence of acute coronary syndromes (ACS). Reports concerning their association with long-term outcome after an ACS are equivocal. The aim of our study was to investigate the association of the 9p21.3 locus with 5-year overall mortality in patients with ST-elevation myocardial infarction (STEMI).

Materials and methods

We performed a retrospective analysis of data collected prospectively in 2 independent registries of consecutive patients with STEMI (derivation and validation group). Genotyping was performed with the TaqMan method. The analyzed end-point was total mortality.

Results

The derivation group comprised 589 patients: 25.3% female (n = 149), mean age 62.4±12.0 years, total 5-year mortality 16.6% (n = 98). When all the study group was analyzed, no significant differences in mortality were found between the genotypes. However, in high-risk patients (GRACE risk score ≥155 points, n = 238), homozygotes associated with higher risk for ACS had significantly better 5-year survival compared to other genotypes. The hazard ratio associated with the high-risk genotype (a homozygote of high risk for ACS or a heterozygote) was: HR = 2.2 (1.15–4.2) for the rs10757278 polymorphism, HR = 2.7 (95% CI 1.3–5.4) for the rs4977574 one and HR = 2.3 (1.2–4.5) for the rs1333049 one (Cox proportional hazards model). Survival analysis in the validation group (n = 365) showed a clear trend towards better prognosis in GG homozygotes of the rs10757278 SNP, which confirms our initial results (p = 0.09, log-rank test).

Conclusions

The 9p21.3 locus is associated with 5-year mortality in high-risk patients with STEMI. The genotypes associated with higher risk for ACS show a protective effect in terms of further survival (instead of a deteriorating prognosis, as reported previously). This finding, due to the very high size of the effect, could potentially be applied to clinical practice, if appropriate methods are elaborated.  相似文献   
119.
Receptors for advanced glycation end-products (RAGE) are multiligand cell surface receptors of the immunoglobin family expressed by epithelium and macrophages, and expression increases following exposure to cigarette smoke extract (CSE). The present study sought to characterize the proinflammatory contributions of RAGE expressed by alveolar macrophages (AMs) following CSE exposure. Acute exposure of mice to CSE via nasal instillation revealed diminished bronchoalveolar lavage (BAL) cellularity and fewer AMs in RAGE knockout (KO) mice compared with controls. Primary AMs were obtained from BAL, exposed to CSE in vitro, and analyzed. CSE significantly increased RAGE expression by wild-type AMs. Employing ELISAs, wild-type AMs exposed to CSE had increased levels of active Ras, a small GTPase that perpetuates proinflammatory signaling. Conversely, RAGE KO AMs had less Ras activation compared with wild-type AMs after exposure to CSE. In RAGE KO AMs, assessment of p38 MAPK and NF-κB, important intracellular signaling intermediates induced during an inflammatory response, revealed that CSE-induced inflammation may occur in part via RAGE signaling. Lastly, quantitative RT-PCR revealed that the expression of proinflammatory cytokines including TNF-α and IL-1β were detectably decreased in RAGE KO AMs exposed to CSE compared with CSE-exposed wild-type AMs. These results reveal that primary AMs orchestrate CSE-induced inflammation, at least in part, via RAGE-mediated mechanisms.  相似文献   
120.
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号