首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   20篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   7篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   12篇
  2014年   11篇
  2013年   17篇
  2012年   12篇
  2011年   19篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   23篇
  2006年   18篇
  2005年   17篇
  2004年   14篇
  2003年   14篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
排序方式: 共有267条查询结果,搜索用时 343 毫秒
91.
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80°C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.  相似文献   
92.
Lipopolysaccharide endotoxins (LPS) are the most common pyrogenic substances in recombinant peptides and proteins purified from Gram-negative bacteria, such as Escherichia coli. In this respect, aqueous two-phase micellar systems (ATPMS) have already proven to be a good strategy to purify recombinant proteins of pharmaceutical interest and remove high LPS concentrations. In this paper, we review our recent experimental work in protein partitioning in Triton X-114 ATPMS altogether with some new results and show that LPS–protein aggregation can influence both protein and LPS partitioning. Green fluorescent protein (GFPuv) was employed as a model protein. The ATPMS technology proved to be effective for high loads of LPS removal into the micelle-rich phase (%REMLPS?>?98 %) while GFPuv partitioned preferentially to the micelle-poor phase (K GFPuv?<?1.00) due to the excluded-volume interactions. However, theoretically predicted protein partition coefficient values were compared with experimentally obtained ones, and good agreement was found only in the absence of LPS. Dynamic light scattering measurements showed that protein–LPS interactions were taking place and influenced the partitioning process. We believe that this phenomenon should be considered in LPS removal employing any kind of aqueous two-phase system. Nonetheless, ATPMS can still be considered as an efficient strategy for high loads of LPS removal, but being aware that the excluded-volume partitioning theory available might overestimate partition coefficient values due to the presence of protein–LPS aggregation.  相似文献   
93.
Adenosine is a ubiquitous signaling molecule whose physiological functions are mediated by its interaction with four G-protein-coupled receptor subtypes, termed A(1), A(2A), A(2B) and A(3). As a result of increased metabolic rates, this nucleoside is released from a variety of cells throughout the body in concentrations that can have a profound impact on vasculature and immunoescape. However, as high concentrations of adenosine have been reported in cancer tissues, it also appears to be implicated in the growth of tumors. Thus, full characterisation of the role of adenosine in tumor development, by addressing the question of whether adenosine receptors are present in cancer tissues, and, if so, which receptor subtype mediates its effects in cancer growth, is a vital research goal. To this end, this review focuses on the most relevant aspects of adenosine receptor subtype activation in tumors reported so far. Although all adenosine receptors now have an increasing number of recognised biological roles in tumors, it seems that the A(2A) and A(3) subtypes are the most promising as regards drug development. In particular, activation of A(2A) receptors leads to immunosuppressive effects, which decreases anti-tumoral immunity and thereby encourages tumor growth. Due to this behavior, the addition of A(2A) antagonists to cancer immunotherapeutic protocols has been suggested as a way of enhancing tumor immunotherapy. Interestingly, the safety of such compounds has already been demonstrated in trials employing A(2A) antagonists in the treatment of Parkinson's disease. As for A(3) receptors, the effectiveness of their agonists in several animal tumor models has led to the introduction of these molecules into a programme of pre-clinical and clinical trials. Paradoxically, A(3) receptor antagonists also appear to be promising candidates in human cancer treatment of regimes. Clearly, research in this still field is still in its infancy, with several important and challenging issues remaining to be addressed, although purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.  相似文献   
94.
95.
A2A adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A2AARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A2AAR stimulation in a rat model of arthritis. We investigated A2AAR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A2AARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A2AAR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A2AAR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A2AAR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A2AAR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A2AAR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A2AARs in lymphocytes from RA patients. The effectiveness of A2AAR stimulation in a rat model of arthritis supported the role of A2AAR agonists as potential pharmacological treatment for RA.  相似文献   
96.
Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults.  相似文献   
97.
Abstract. The tiger beetle, Phaeoxantha klugii Chaudoir, survives the annual inundation period in Central Amazonian floodplains as a third‐instar larvae submerged in the soil at approximately 29 °C for up to 3.5 months. Previous studies showed an exceptional anoxia resistance in these larvae and this study investigates whether they perform anaerobiosis. Larvae collected in the field were exposed to a pure nitrogen atmosphere for 0–9 days in the laboratory. The content of lactate, alanine, free sugars and glycogen is analysed in surviving larvae. Lactate and alanine contents rise during anoxia from around 1.5 and 7 to 6–14 and 15–22 µmol g?1 fresh mass, respectively, providing evidence for anaerobic metabolism. Both compounds show a steep increase during the first 12 h and a tendency to rise further with increasing duration of anoxic conditions, indicating a significant metabolic depression within the first day. Content of free sugars and glycogen varies greatly between individuals and ranges from 0.08–2.5 and 0.05–2.9 mg g?1 fresh mass, respectively. Whether glycogen is used as metabolic substrate for anaerobiosis could not be verified. The findings for free sugars indicate that larvae apparently maintain the ability to regulate the level of glucose and/or trehalose even after 9 days of anoxia.  相似文献   
98.
Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression.  相似文献   
99.
The kidney-proximal tubules are involved in reabsorbing two-thirds of the glomerular ultrafiltrate, a key Ca(2+)-modulated process that is essential for maintaining homeostasis in body fluid compartments. The basolateral membranes of these cells have a Ca(2+)-ATPase, which is thought to be responsible for the fine regulation of intracellular Ca(2+) levels. In this paper we show that nanomolar concentrations of ceramide (Cer(50) = 3.5 nm), a natural product derived from sphingomyelinase activity in biological membranes, promotes a 50% increase of Ca(2+)-ATPase activity in purified basolateral membranes. The stimulatory effect of ceramide occurs through specific and direct (cAMP-independent) activation of a protein kinase A (blocked by 10 nm of the specific inhibitor of protein kinase A (PKA), the 5-22 peptide). The activation of PKA by ceramide results in phosphorylation of the Ca(2+)-ATPase, as detected by an anti-Ser/Thr specific PKA substrate antibody. It is observed a straight correlation between increase of Ca(2+)-ATPase activity and PKA-mediated phosphorylation of the Ca(2+) pump molecule. Ceramide also stimulates phosphorylation of renal Ca(2+)-ATPase via protein kinase C, but stimulation of this pathway, which inhibits the Ca(2+) pump in kidney cells, is counteracted by the ceramide-triggered PKA-mediated phosphorylation. The potent effect of ceramide reveals a new physiological activator of the plasma membrane Ca(2+)-ATPase, which integrates the regulatory network of glycerolipids and sphingolipids present in the basolateral membranes of kidney cells.  相似文献   
100.
The Amazonian oscar is extremely resistant to hypoxia, and tolerance scales with size. Overall, ionoregulatory responses of small ( approximately 15 g) and large oscars ( approximately 200 g) to hypoxia were qualitatively similar, but the latter were more effective. Large oscars exhibited a rapid reduction in unidirectional Na(+) uptake rate at the gills during acute hypoxia (Po(2) approximately 10 mmHg), which intensified with time (7 or 8 h); Na(+) efflux rates were also reduced, so net balance was little affected. The inhibitions were virtually immediate (1st h) and preceded a later 60% reduction (at 3 h) in gill Na(+)-K(+)-ATPase activity, reflected in a 60% reduction in maximum Na(+) uptake capacity without change in affinity (Km) for Na(+). Upon acute restoration of normoxia, recovery of Na(+) uptake was delayed for 1 h. These data suggest that dual mechanisms may be involved (e.g., immediate effects of O(2) availability on transporters, channels, or permeability, slower effects of Na(+)-K(+)-ATPase regulation). Ammonia excretion appeared to be linked indirectly to Na(+) uptake, exhibiting a Michaelis-Menten relationship with external [Na(+)], but the Km was less than for Na(+) uptake. During hypoxia, ammonia excretion fell in a similar manner to Na(+) fluxes, with a delayed recovery upon normoxia restoration, but the relationship with [Na(+)] was blocked. Reductions in ammonia excretion were greater than in urea excretion. Plasma ammonia rose moderately over 3 h hypoxia, suggesting that inhibition of excretion was greater than inhibition of ammonia production. Overall, the oscar maintains excellent homeostasis of ionoregulation and N-balance during severe hypoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号