首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   51篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   4篇
  2019年   6篇
  2018年   16篇
  2017年   4篇
  2016年   13篇
  2015年   22篇
  2014年   35篇
  2013年   38篇
  2012年   44篇
  2011年   45篇
  2010年   17篇
  2009年   22篇
  2008年   31篇
  2007年   41篇
  2006年   23篇
  2005年   43篇
  2004年   33篇
  2003年   31篇
  2002年   31篇
  2001年   5篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1972年   2篇
  1969年   7篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1962年   1篇
  1934年   1篇
  1919年   2篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
11.
12.
In vivo increase in haemolymph volume of canavanine-treated locusts substantiates our previous in vitro findings that canavanine inhibits fluid secretion by locust Malpighian tubules. Furthermore when diuretic hormone is applied in vivo after canavanine treatment haemolymph volume is drastically reduced below levels retained in locusts untreated with canavanine. Again this is in accord with canavanine potentiation of semi-isolated Malpighian tubules and enhanced fluid secretion in vitro. The response is specific to canavanine; compounds similar in structure (arginine, argininic acid, citrulline, canaline, ornithine and homoserine) have no effect on the rate of fluid secreted by Malpighian tubules. Only partial competition is obtained with uridine homoserine.  相似文献   
13.
Diabetic retinopathy (DR ) is one of the common complications associated with diabetes mellitus and the leading cause of blindness worldwide. Recent research has demonstrated that DR is not only a microvascular disease but may be a result of neurodegenerative processes. Moreover, glucose‐induced neuron and glial cell damage may occur shortly after the onset of diabetes which makes the disease hard to diagnose at early stages. SIRT 6, a NAD ‐dependent sirtuin deacylase, modulates aging, energy metabolism, and neurodegeneration. In previous studies we showed that SIRT 6 deficiency causes major retinal transmission defects, changes in the expression of glycolytic genes, and elevated levels of apoptosis. Given the importance of glucose availability for retinal function and the critical role of SIRT 6 in modulating glycolysis, we aimed to analyze SIRT 6 participation in the molecular machinery that regulates the development of experimental DR . Using non‐obese diabetic mice, we determined by western blot that 2 weeks after the onset of the disease, high glucose concentrations induced retinal increase in a neovascularization promoting factor (vascular endothelial growth factor, VEGF ), and the loss of a neuroprotective factor (brain‐derived neurotrophic factor, BDNF) associated with reduced levels of SIRT 6 and increased acetylation levels of its substrates (H3K9 and H3K56) suggesting a deregulation of key neural factors. Noteworthy, retinas from CNS conditionally deleted SIRT 6 mice showed a resemblance to diabetic retinas exhibiting lower protein levels of BDNF factor and increased protein levels of VEGF . Moreover, cultured Müller glial cells subjected to high glucose concentrations exhibited decreased levels of SIRT 6 and increased levels of H3K56 acetylation. In addition, the increment of VEGF levels induced by high glucose was reverted by the over‐expression of SIRT 6 in this cell type. Accordingly, siRNA experiments showed that, when SIRT 6 was silenced, VEGF levels increased. Our findings suggest that epigenetically regulated neurodegenerative events may occur at an early diabetic stage prior to the characteristic proliferative and vascular changes observed at a later diabetic stage.

  相似文献   
14.

Background  

Recent studies of ancestral maize populations indicate that linkage disequilibrium tends to dissipate rapidly, sometimes within 100 bp. We set out to examine the linkage disequilibrium and diversity in maize elite inbred lines, which have been subject to population bottlenecks and intense selection by breeders. Such population events are expected to increase the amount of linkage disequilibrium, but reduce diversity. The results of this study will inform the design of genetic association studies.  相似文献   
15.
Several lines of evidence suggest an association between oxidative DNA-damage repair capacity and cancer risk. In particular, a DNA-glycosylase assay for removal of 8-oxoguanine (8-oxoG) in peripheral blood mononuclear cells (PBMC) has been successfully applied to identify populations with increased risk for lung cancer and squamous cell carcinomas of head and neck. In order to verify whether EBV-transformed lymphoblastoid cell lines (LCL) are a suitable surrogate for PBMC in specific DNA-repair phenotypic assays, a validation trial was conducted. PBMC from 20 healthy subjects were collected and an aliquot was transformed with EBV to obtain LCL. The ability of cell-free extracts from both cell types to incise a 3'-fluorescently labelled duplex oligonucleotide containing a single 8-oxoG (OGG assay) was evaluated. Since this activity is mediated predominantly by OGG1, the OGG1 gene expression was also measured. 8-oxoG DNA-glycosylase activity and OGG1 expression were significantly higher (p<0.0001) in LCL than in PBMC. However, while this assay was shown to be robust and reproducible when used on PBMC (intra-assay CV=8%), a high intra-culture variability was observed with LCL (intra-culture CV=16.8%). Neither differences on OGG1 gene expression nor the cell-cycle distribution seemed to account for this variability. Inter-individual variability of OGG activity in PBMC and LCL was not associated with OGG1 gene expression. We have therefore established a non-radioactive cleavage assay that can be easily applied to measure OGG activity in human PBMC. The use of LCL for DNA-repair genotype-phenotype correlation studies seems to be inappropriate, at least with cell-free based functional assays.  相似文献   
16.
The explosive outbreaks of COVID-19 seen in congregate settings such as prisons and nursing homes, has highlighted a critical need for effective outbreak prevention and mitigation strategies for these settings. Here we consider how different types of control interventions impact the expected number of symptomatic infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a stochastic point process coupled to a branching process, while spread between residents is modeled via a deterministic compartmental model that accounts for depletion of susceptible individuals. Control is modeled as a proportional decrease in the number of susceptible residents, the reproduction number, and/or the proportion of symptomatic infections. This permits a range of assumptions about the density dependence of transmission and modes of protection by vaccination, depopulation and other types of control. We find that vaccination or depopulation can have a greater than linear effect on the expected number of cases. For example, assuming a reproduction number of 3.0 with density-dependent transmission, we find that preemptively reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. In some circumstances, it may be possible to reduce the risk and burden of disease outbreaks by optimizing the way a group of residents are apportioned into distinct residential units. The optimal apportionment may be different depending on whether the goal is to reduce the probability of an outbreak occurring, or the expected number of cases from outbreak dynamics. In other circumstances there may be an opportunity to implement reactive disease control measures in which the number of susceptible individuals is rapidly reduced once an outbreak has been detected to occur. Reactive control is most effective when the reproduction number is not too high, and there is minimal delay in implementing control. We highlight the California state prison system as an example for how these findings provide a quantitative framework for understanding disease transmission in congregate settings. Our approach and accompanying interactive website (https://phoebelu.shinyapps.io/DepopulationModels/) provides a quantitative framework to evaluate the potential impact of policy decisions governing infection control in outbreak settings.  相似文献   
17.
18.
19.
Wnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/β‐catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here, we report the generation and characterization of a new knock‐in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multi‐cistronic targeting cassette at the 3′ end of the universal WNT/CTNNB1 target gene Axin2. The resulting knock‐in allele expresses a bright fluorescent reporter (3xNLS‐SGFP2) and a doxycycline‐inducible driver for lineage tracing (rtTA3). We show that the Axin2P2A‐rtTA3‐T2A‐3xNLS‐SGFP2 strain labels WNT/CTNNB1 responsive cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts.  相似文献   
20.

It is known that oxidative stress may cause neuronal injury and several experimental models showed that As2O3 exposure causes oxidative stress. Lycopene, a carotenoid, has been shown to have protective effect in neurological disease models due to antioxidant activity, but its effect on As2O3-induced neurotoxicity is not identified yet. The aim of this study is to investigate the effects of lycopene on As2O3-induced neuronal damage and the related mechanisms. Cell viability was determined by the MTT assay. Lycopene was administrated with different concentrations (2, 4, 6 and 8 µM) one hour before 2 µM As2O3 exposure in SH-SY5Y human neuroblastoma cells. The anti-oxidant effect of lycopene was determined by measuring superoxide dismutase (SOD), catalase (CAT) hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS). MTT results and LDH cytotoxicity analyses showed that pretreatment with 8 µM lycopene significantly improved the toxicity due to As2O3 exposure in SH?SY5Y neuroblastoma cells. Pretreatment with lycopene significantly increased the activities of anti?oxidative enzymes as well as total antioxidant status and decreased total oxidative status in As2O3 exposed cells. The results of this study indicate that lycopene may be a potent neuroprotective against oxidative stress and could be used to prevent neuronal injury or death in several neurological diseases.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号