首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6987篇
  免费   429篇
  7416篇
  2023年   57篇
  2022年   95篇
  2021年   176篇
  2020年   115篇
  2019年   134篇
  2018年   199篇
  2017年   143篇
  2016年   226篇
  2015年   375篇
  2014年   347篇
  2013年   525篇
  2012年   573篇
  2011年   544篇
  2010年   348篇
  2009年   325篇
  2008年   392篇
  2007年   385篇
  2006年   390篇
  2005年   363篇
  2004年   326篇
  2003年   288篇
  2002年   285篇
  2001年   47篇
  2000年   33篇
  1999年   45篇
  1998年   60篇
  1997年   65篇
  1996年   33篇
  1995年   51篇
  1994年   42篇
  1993年   34篇
  1992年   25篇
  1991年   34篇
  1990年   16篇
  1989年   18篇
  1988年   24篇
  1987年   16篇
  1986年   9篇
  1985年   14篇
  1984年   31篇
  1983年   17篇
  1982年   18篇
  1981年   23篇
  1980年   23篇
  1979年   16篇
  1978年   17篇
  1977年   11篇
  1976年   11篇
  1974年   9篇
  1965年   8篇
排序方式: 共有7416条查询结果,搜索用时 15 毫秒
131.
MsDef1 and MtDef4 from Medicago spp. are small cysteine‐rich defensins with potent antifungal activity against a broad range of filamentous fungi. Each defensin has a hallmark γ‐core motif (GXCX3–9C), which contains major determinants of its antifungal activity. In this study, the antifungal activities of MsDef1, MtDef4, and peptides derived from their γ‐core motifs, were characterized during colony initiation in the fungal model, Neurospora crassa. These defensins and their cognate peptides inhibited conidial germination and accompanying cell fusion with different potencies. The inhibitory effects of MsDef1 were strongly mediated by the plasma membrane localized sphingolipid glucosylceramide. Cell fusion was selectively inhibited by the hexapeptide RGFRRR derived from the γ‐core motif of MtDef4. Fluorescent labelling of this hexapeptide showed that it strongly bound to the germ tube plasma membrane/cell wall. Using N. crassa expressing the Ca2+ reporter aequorin, MsDef1, MtDef4 and their cognate peptides were each shown to perturb Ca2+ homeostasis in specific and distinct ways, and the disruptive effects of MsDef1 on Ca2+ were mediated by glucosylceramide. Together, our results demonstrate that MsDef1 and MtDef4 differ markedly in their antifungal properties and specific domains within their γ‐core motifs play important roles in their different modes of antifungal action.  相似文献   
132.
PON gene family includes at least three members termed PON1, PON2 and PON3, and it is mapped on human chromosome 7q21-q22. PON1 and PON3 gene products are constituents of high density lipoprotein (HDL) and have many enzymatic properties and antioxidant activity. PONs are proposed to participate in the prevention of low density lipoprotein (LDL) oxidation. PON1 and PON2 genes have missense polymorphisms, but, to date, no missense variants are reported in PON3 gene. In this work we explored the existence of genetic variants within the PON3 coding sequences. Five point mutations were identified by direct sequencing of genomic DNA derived from 250 randomly selected DNA samples of 1143 blood donors living in southern Italy. Three were silent mutations, while two were missense mutations that give rise to amino acid substitutions at positions 311 (S>T) and 324 (G>D). The missense variations in the DNA of the 1143 samples had frequencies of 0.22% (5 out of 2286 alleles) for the S311T mutation, and 0.57% (13 out of 2286 alleles) for the G324D mutation. The effect of these variants on the metabolic activity of paraoxonase 3 remains to be further evaluated.  相似文献   
133.
Clostridium perfringens phospholipase C (Cp-PLC), the major virulence factor in the pathogenesis of gas gangrene, is a Zn(2+) metalloenzyme with lecithinase and sphingomyelinase activities. Its structure shows an N-terminal domain containing the active site, and a C-terminal Ca(2+) binding domain required for membrane interaction. Although the knowledge of the structure of Cp-PLC and its interaction with aggregated phospholipids has advanced significantly, an understanding of the effects of Cp-PLC in mammalian cells is still incomplete. Cp-PLC binds to artificial bilayers containing cholesterol and sphingomyelin or phosphatidylcholine (PC) and degrades them, but glycoconjugates present in biological membranes influence its binding or positioning toward its substrates. Studies with Cp-PLC variants harboring single amino-acid substitutions have revealed that the active site, the Ca(2+) binding region, and the membrane interacting surface are required for cytotoxic and haemolytic activity. Cp-PLC causes plasma membrane disruption at high concentrations, whereas at low concentrations it perturbs phospholipid metabolism, induces DAG generation, PKC activation, Ca(2+) mobilization, and activates arachidonic acid metabolism. The cellular susceptibility to Cp-PLC depends on the composition of the plasma membrane and the capacity to up-regulate PC synthesis. The composition of the plasma membrane determines whether Cp-PLC can bind and acquire its active conformation, and thus the extent of phospholipid degradation. The capacity of PC synthesis and the availability of precursors determine whether the cell can replace the degraded phospholipids. Whether the perturbations of signal transduction processes caused by Cp-PLC play a role in cytotoxicity is not clear. However, these perturbations in endothelial cells, platelets and neutrophils lead to the uncontrolled production of intercellular mediators and adhesion molecules, which inhibits bacterial clearance and induces thrombotic events, thus favouring bacterial growth and spread in the host tissues.  相似文献   
134.
Decolourisation of the azo dye Reactive Black 5 by Geotrichum sp. CCMI 1019 was studied using stirred tank reactors (STR) and two types of bubble columns (porous plate (PP) bubble column and aeration tube (AT) bubble column). For the bubble columns, the kLa increased with the gas fractional hold-up (εG) and the aeration rate. A linear relationship between εG and superficial gas velocity was obtained for all reactors. At same aeration rates, the PP bubble columns showed higher kLa and hold-up values than the AT bubble column. In the STRs, large and dense aggregates were formed which adhered to surfaces whereas bubble columns gave smaller and less compact pellets.

Manganese peroxidase and laccase were detected in the extracellular media in all reactors. However, laccase was only detected after the onset of decolourisation, suggesting that additional enzymes may be involved. Mn peroxidase activity was detected (about 46 U/ml) in both the STRs and AT bubble columns but higher values (110 U/ml) were obtained with the PP bubble columns.

Out of the three reactor systems studied, the AT bubble columns gave the most favourable results for Reactive Black 5 decolourisation. Rapid and complete colour removal was obtained throughout the visible spectrum. Bubble columns are simple in design as well as operation and may be useful for the bioremediation of textile wastewater.  相似文献   
135.
Summary We report on a thrombocytopenic female belonging to a pedigree with the Wiskott-Aldrich syndrome (WAS). Restriction fragment length polymorphism (RFLP) analysis with probe M27, closely linked to the WAS gene, demonstrated that she is a carrier of WAS. Both small-sized and normal-sized platelets were present, suggesting that, unlike the vast majority of WAS carriers, she does not manifest nonrandom X-chromosome inactivation in the thrombopoietic cell lineage. Study of X-chromosome inactivation by means of RFLP and methylation analysis demonstrated that the pattern of X-chromosome inactivation was nonrandom in T lymphocytes, but random in granulocytes. While this is the first complete report on the occurrence of thrombocytopenia in a carrier female of WAS as the result of atypical lyonization, it also suggests that expression of the WAS gene occurs at (or extends up to) a later stage than the multipotent stem cell along the hematopoietic differentiation pathway.  相似文献   
136.
137.
Decoding others' intentions is a crucial aspect of social cognition. Neuroimaging studies suggest that inferring immediate goals engages the neural system for action understanding (i.e. mirror system), while the decoding of long-term intentions requires the system subserving the attribution of mental states (i.e. mentalizing). A controversial issue, stimulated by recent inconsistent results, concerns whether the two systems are concurrently vs. exclusively involved in intention understanding. This issue is particularly relevant in the case of social interactions, whose processing has been mostly, but not uncontroversially, associated with the mentalizing system. We tested the alternative hypothesis that the relative contribution of the two systems in intention understanding may also depend on the shared goal of interacting agents. To this purpose, 27 participants observed social interactions differing in their cooperative vs. affective shared goal during functional-Magnetic-Resonance-Imaging. The processing of both types of interactions activated the right temporo-parietal junction involved in mentalizing on action goals. Additionally, whole-brain and regions-of-interest analyses showed that the action understanding system (inferior prefrontal-parietal cortex) was more strongly activated by cooperative interactions, while the mentalizing-proper system (medial prefrontal cortex) was more strongly engaged by affective interactions. These differences were modulated by individual differences in empathizing. Both systems can thus be involved in understanding social intentions, with a relative weighting depending on the specific shared goal of the interaction.  相似文献   
138.
This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonization.It investigates a commonly occurring interaction of three species:pea aphid Acyrthosiphon pisum,barrel medic Medicago truncatula,and the AM fungus Rhizophagus irregularis,examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization(42% and 84% root length colonized).Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph(EPG)technique,also,foliar nutrient content and plant growth were measured.Summarizing,aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls.Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants.Shoots of the 84% AM plants had higher percent carbon(43.7%)relative to controls(40.5%),and the 84% AM plants had reduced percent nitrogen(5.3%)relative to the 42% AM plants(6%).In conclusion,EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy(e.g.,thicker leaves),and poor food quality(reduced nitrogen)in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion.This work suggests that M.truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.  相似文献   
139.
140.
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD‐affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD. J. Cell. Biochem. 114: 7–20, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号