首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   34篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   13篇
  2014年   11篇
  2013年   16篇
  2012年   29篇
  2011年   19篇
  2010年   17篇
  2009年   14篇
  2008年   21篇
  2007年   19篇
  2006年   17篇
  2005年   14篇
  2004年   24篇
  2003年   18篇
  2002年   11篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   6篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1968年   1篇
排序方式: 共有366条查询结果,搜索用时 109 毫秒
171.

Background

Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture.

Results

Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins.

Conclusions

The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
  相似文献   
172.
173.
Many members of the Halobacteriaceae were found to produce halocins, molecules that inhibit the growth of other halophilic archaea. Halocin H4 that is produced by Haloferax mediterranei and inhibits the growth of Halobacterium salinarum is one of the best studied halocins to date. The gene encoding this halocin had been previously identified as halH4, located on one of Hfx. mediterranei megaplasmids. We generated a mutant of the halH4 gene and examined the killing ability of the Haloferax mediterranei halH4 mutant with respect to both Halobacterium salinarum and Haloferax volcanii. We showed that both wild-type Hfx. mediterranei and the halH4 mutant strain efficiently inhibited the growth of both species, indicating halocin redundancy. Surprisingly, the halH4 deletion mutant exhibited faster growth in standard medium than the wild type, and is likely to have a better response to several nucleotides, which could explain this phenotype.  相似文献   
174.
The relationship between pelagic larval duration (PLD) and population connectivity in marine fishes has been controversial, but most studies to date have focused on tropical taxa. Here, we examine PLD in 11 species of triplefin fishes from a temperate environment in the Hauraki Gulf, New Zealand, to describe daily increment patterns and settlement marks in the otoliths. The formation of daily increments was validated using larvae of known age and tetracycline marking of settled juveniles. Settlement mark identity was verified by comparing total increment counts from otoliths of recently settled fishes with PLD counts from post-settlement fishes. A similar pattern of three groups of increments across the otolith was found in all specimens examined. The settlement mark was similar in all species and occurred as a sharp drop in increment width within the area of transition in optical density. PLD was lengthy, compared to species of triplefins from elsewhere, and ranged between 54.4 ± 1.7 SE days in Bellapiscis lesleyae to 86.4 ± 2.6 SE days in Forsterygion malcolmi. Variation in PLD within species was high but did not mask interspecific differences. PLD was not phylogenetically constrained, as sister species differed significantly in PLD. PLD was compared with genetic population connectivity for eight of the study species using mitochondrial gene flow data from Hickey, Lavery, Hannan, Baker, Clements. Mol Ecol 18:680–696 (2009). The observed lack of correlation between PLD and gene flow suggests that dispersal is limited by other factors, such as larval behaviour and the availability of settlement habitat.  相似文献   
175.
Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis.  相似文献   
176.
The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation.  相似文献   
177.
178.
1?C labeling experiments performed with kernel cultures showed that developing maize endosperm is more efficient than other non-photosynthetic tissues such as sunflower and maize embryos at converting maternally supplied substrates into biomass. To characterize the metabolic fluxes in endosperm, maize kernels were labeled to isotopic steady state using 13C-labeled glucose. The resultant labeling in free metabolites and biomass was analyzed by NMR and GC-MS. After taking into account the labeling of substrates supplied by the metabolically active cob, the fluxes through central metabolism were quantified by computer-aided modeling. The flux map indicates that 51-69% of the ATP produced is used for biomass synthesis and up to 47% is expended in substrate cycling. These findings point to potential engineering targets for improving yield and increasing oil contents by, respectively, reducing substrate cycling and increasing the commitment of plastidic carbon into fatty acid synthesis at the level of pyruvate kinase.  相似文献   
179.
180.
TAR DNA-binding protein 43 (TDP-43) is a nuclear protein involved in RNA splicing and a major protein component in ubiquitin-positive, tau-negative inclusions of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Under disease conditions, TDP-43 redistributes to the cytoplasm where it can be phosphorylated, ubiquitinated, and proteolytically cleaved. Enzymes responsible for TDP-43 proteolytic processing in brain remain largely unreported. Using a MS approach, we identified two truncated TDP-43 peptides, terminating C-terminal to asparagines 291 (N291) and 306 (N306). The only documented mammalian enzyme capable of cleaving C-terminal to asparagine is asparaginyl endopeptidase (AEP). TDP-43-immunoreactive fragments (~35 and 32 kDa) predicted to be generated by AEP cleavage at N291 and N306 were observed by Western blot analyses of postmortem frontotemporal lobar degeneration brain tissue and cultured human cells over-expressing TDP-43. Studies in vitro determined that AEP can directly cleave TDP-43 at seven sites, including N291 and N306. Western blots of brain homogenates isolated from AEP-null mice and wild-type littermate controls revealed that TDP-43 proteolytic fragments were substantially reduced in the absence of AEP in vivo. Taken together, we conclude that TDP-43 is cleaved by AEP in brain. Moreover, these data highlight the utility of combining proteomic strategies in vitro and in vivo to provide insight into TDP-43 biology that will fuel the design of more detailed models of disease pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号