首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   85篇
  国内免费   1篇
  2023年   5篇
  2022年   9篇
  2021年   15篇
  2020年   7篇
  2019年   11篇
  2018年   22篇
  2017年   13篇
  2016年   35篇
  2015年   49篇
  2014年   59篇
  2013年   67篇
  2012年   86篇
  2011年   88篇
  2010年   82篇
  2009年   57篇
  2008年   74篇
  2007年   71篇
  2006年   67篇
  2005年   65篇
  2004年   64篇
  2003年   71篇
  2002年   60篇
  2001年   15篇
  2000年   9篇
  1999年   18篇
  1998年   16篇
  1997年   12篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1990年   9篇
  1989年   13篇
  1988年   10篇
  1987年   7篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   9篇
  1981年   5篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1971年   2篇
  1957年   2篇
  1928年   2篇
排序方式: 共有1298条查询结果,搜索用时 514 毫秒
61.
The recently identified human and rodent plasma membrane proteins CNT1, CNT2 and CNT3 belong to a gene family (CNT) that also includes the bacterial nucleoside transport protein NupC. Heterologous expression in Xenopus oocytes has established that CNT1-3 correspond functionally to the three major concentrative nucleoside transport processes found in human and other mammalian cells (systems cit, cif and cib, respectively) and mediate Na(+) - linked uptake of both physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs. Here, one describes a complementary Xenopus oocyte transport study of Escherichia coli NupC using the plasmid vector pGEM-HE in which the coding region of NupC was flanked by 5'- and 3'-untranslated sequences from a Xenopus beta-globin gene. Recombinant NupC resembled human (h) and rat (r) CNT1 in nucleoside selectivity, including an ability to transport adenosine and the chemotherapeutic drugs 3'-azido-3'-deoxythymidine (AZT), 2',3'- dideoxycytidine (ddC) and 2'-deoxy-2',2'-difluorocytidine (gemcitabine), but also interacted with inosine and 2',3'- dideoxyinosine (ddl). Apparent affinities were higher than for hCNT1, with apparent K(m) values of 1.5-6.3 microM for adenosine, uridine and gemcitabine, and 112 and 130 microM, respectively, for AZT and ddC. Unlike the relatively low translocation capacity of hCNT1 and rCNT1 for adenosine, NupC exhibited broadly similar apparent V(max) values for adenosine, uridine and nucleoside drugs. NupC did not require Na(+) for activity and was H(+) - dependent. The kinetics of uridine transport measured as a function of external pH were consistent with an ordered transport model in which H(+) binds to the transporter first followed by the nucleoside. These experiments establish the NupC-pGEM-HE/oocyte system as a useful tool for characterization of NupC-mediated transport of physiological nucleosides and clinically relevant nucleoside therapeutic drugs.  相似文献   
62.
63.
The catalase-peroxidase encoded by katG of Burkholderia pseudomallei (BpKatG) is 65% identical with KatG of Mycobacterium tuberculosis, the enzyme responsible for the activation of isoniazid as an antibiotic. The structure of a complex of BpKatG with an unidentified ligand, has been solved and refined at 1.7A resolution using X-ray synchrotron data collected from crystals flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are 15.3% and 18.6%, respectively. The crystallized enzyme is a dimer with one modified heme group and one metal ion, likely sodium, per subunit. The modification on the heme group involves the covalent addition of two or three atoms, likely a perhydroxy group, to the secondary carbon atom of the vinyl group on ring I. The added group can form hydrogen bonds with two water molecules that are also in contact with the active-site residues Trp111 and His112, suggesting that the modification may have a catalytic role. The heme modification is in close proximity to an unusual covalent adduct among the side-chains of Trp111, Tyr238 and Met264. In addition, Trp111 appears to be oxidized on C(delta1) of the indole ring. The main channel, providing access of substrate hydrogen peroxide to the heme, contains a region of unassigned electron density consistent with the binding of a pyridine nucleotide-like molecule. An interior cavity, containing the sodium ion and an additional region of unassigned density, is evident adjacent to the adduct and is accessible to the outside through a second funnel-shaped channel. A large cleft in the side of the subunit is evident and may be a potential substrate-binding site with a clear pathway for electron transfer to the active-site heme group through the adduct.  相似文献   
64.
Formation of GTP by nucleoside diphosphate kinase (NDPK) can contribute to G protein activation in vitro. To study the effect of NDPK on G protein activity in living cells, the NDPK isoforms A and B were stably expressed in H10 cells, a cell line derived from neonatal rat cardiomyocytes. Overexpression of either NDPK isoform had no effect on cellular GTP and ATP levels, basal cAMP levels, basal adenylyl cyclase activity, and the expression of G(s)alpha and G(i)alpha proteins. However, co-expression of G(s)alpha led to an increase in cAMP synthesis that was largely enhanced by the expression of NDPK B, but not NDPK A, and that was confirmed by direct measurement of adenylyl cyclase activity. Cells expressing an inactive NDPK B mutant (H118N) exhibited a decreased cAMP formation in response to G(s)alpha. Co-immunoprecipitation studies demonstrated a complex formation of the NDPK with Gbetagamma dimers. The overexpression of NDPK B, but not its inactive mutant or NDPK A, increased the phosphorylation of Gbeta subunits. In summary, our data demonstrate a specific NDPK B-mediated activation of a G protein in intact cells, which is apparently caused by formation of NDPK B.Gbetagamma complexes and which appears to contribute to the receptor-independent activation of heterotrimeric G proteins.  相似文献   
65.
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.  相似文献   
66.
A comparison study on folate quantitation was carried out between the recently developed stable isotope dilution assay using liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the frequently used HPLC with fluorimetric detection (LC-FD). By applying LC-MS-MS, spinach, wheat bread, beef, and blood plasma were found to contain 159.2, 19.8, 1.2, and 5.6 microg/100 g total folates, respectively, whereas the respective quantitative data obtained by LC-FD were 95.5, 16.2, 0.7, and 6.8 microg/100 g. In all samples, LC-MS-MS revealed superior selectivity and precision and circumvented the shortcomings of conventional LC techniques, i.e., ambiguous peak assignment as well as high detection limits for 5-formyltetrahydrofolate, 10-formylfolic acid, and folic acid. The affinity chromatography columns used in this study showed excellent cleanup performance and permitted detection limits as low as 0.1, 0.5, 0.1, 0.08, and 0.1 microg/100 g for tetrahydrofolate (H(4)folate), 5-methyl-H(4)folate, 5-formyl-H(4)folate, 10-formylfolate, and pteroylglutamic acid, respectively. Thus, a 10-fold higher sensitivity compared to solid-phase anion-exchange cartridges was achieved. However, affinity chromatography columns revealed a significantly higher affinity toward the natural vitamers than to the racemic isotopomeric standards, which has to be considered when applying the latter in stable isotope dilution assays.  相似文献   
67.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   
68.
Two Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl(-)/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca(2+) signal in response to mucosal nucleotides that may contribute to the increased Cl(-)/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca(2+) signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height.  相似文献   
69.
Fibroblast growth factors (FGFs) play important roles during fetal and embryonic development. FGF-2 (basic FGF, bFGF) is widely expressed in the embryo and has been linked to tissue growth and remodeling. However, it is tightly bound to heparin sulfate proteoglycans of the extracellular matrix which quenches its biological activity. We showed previously that a secreted FGF-binding protein (FGF-BP) can mobilize and activate FGF-2 from the extracellular matrix. While considerable data exist on the expression and pivotal role of FGF-BP in tumor growth, less is known about FGF-BP during embryonic development. In this immunohistochemical study in mice, we show FGF-BP protein expression in a broad spectrum of tissues at various stages between day 8 and day 16 of embryonal development, and compare FGF-BP and FGF-2 immunolocalization. FGF-BP is detected in the digestive system, thymus, skin, hair follicles, dental germ, respiratory tract, various glandular tissues, kidney, liver, and certain areas of the CNS, with immunoreactivity being mainly confined to cells of primitive epithelia. The putative significance of these findings with regard to mobilization of FGF-2 or other molecules is discussed. From the locally confined, time-dependent, and apparently tightly regulated FGF-BP expression we propose that FGF-BP may play an important role in embryonic development.  相似文献   
70.
As research progress has led to programs for the elimination of onchocerciasis as a public health problem, research must now be intensified to protect elimination efforts. A profound understanding of the immunology in the human-parasite relationship is required for predicting the impacts of an altered immune response in a population post-microfilaricide treatment, and for the development of a vaccine against onchocerciasis, a highly desirable tool to guarantee sustained elimination success. This article summarizes the recent advancements in understanding the human immune mechanisms against onchocerciasis, and focuses on the new concept of T-cell suppressor responses as a major counterbalance mechanism for effector responses driven by T helper 1 and T helper 2 cells against the filarial worms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号