首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   33篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   16篇
  2019年   15篇
  2018年   10篇
  2017年   16篇
  2016年   9篇
  2015年   20篇
  2014年   26篇
  2013年   30篇
  2012年   19篇
  2011年   27篇
  2010年   18篇
  2009年   18篇
  2008年   31篇
  2007年   23篇
  2006年   15篇
  2005年   8篇
  2004年   15篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   7篇
  1996年   4篇
  1995年   4篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1965年   2篇
排序方式: 共有455条查询结果,搜索用时 31 毫秒
51.
Intracellular Ca2+ regulates many fundamental physiological processes in excitable and non-excitable cells. Certainly this is the case of sperm where the local concentration of intracellular Ca2+ ([Ca2+]i) is significantly influenced by Ca2+ permeable channels present in the cell plasma membrane. Amongst these channels, the voltage dependent Ca2+ channels (CaV) of the T-type (CaV3) appear to have an eminent role in the acrosome reaction (AR) of some sperm species, though they may participate in other important functions like motility and capacitation. The AR is an exocytotic event where the acrosome vesicle in the posterior region of the head fuses with the plasma membrane. This reaction allows sperm to fuse and fertilize the egg. Here we summarize our present knowledge regarding CaV3 channels in sperm, show the first direct electrophysiological evidence for their presence in maturing mouse sperm and discuss some of the relevant unanswered questions.  相似文献   
52.
53.
Oxidized phospholipids (OxPLs) are pro‐inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single‐chain variable fragment (scFv) of the antigen‐binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age‐related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age‐related bone loss. We show here that transgenic expression of E06‐scFv attenuated the age‐associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06‐scFv attenuated the age‐associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA‐seq analysis showed that E06‐scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age‐related bone loss, E06‐scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age‐associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non‐alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06‐scFv in mice.  相似文献   
54.
VEGF-induced vascular permeability is mediated by FAK   总被引:1,自引:0,他引:1  
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.  相似文献   
55.
Because inflammation during pregnancy can lead to neurodevelopmental anomalies, we investigated the role of inflamed microglia on cholinergic precursors in the rat embryonic basal forebrain (BF) cultured on embryonic day 15. Conditioned medium (CM) taken from microglia stimulated variously (microglial CM; MCM) increased activity of choline acetyltransferase (ChAT), the enzyme responsible for acetylcholine biosynthesis and a phenotypic hallmark of the cholinergic neuron. There was a concomitant decline in glutamic acid decarboxylase expression. Of stimulators tested, only β-amyloid failed to produce effective MCM. Infection with a Lac-Z-containing retrovirus revealed that MCM promoted cholinergic differentiation from undifferentiated precursors in the population. Several candidates were tested for their ability to mimic MCM. Mature nerve growth factor (NGF) did not mimic MCM, but acted synergistically with it to promote enormous increases in ChAT activity. However, a microglial cell line produced high-molecular weight forms of NGF (pro-NGF) that were lethal to mature cholinergic neurons. Although bone morphogenetic proteins (BMP) 2, 4, and 9 increased ChAT activity dose-dependently, noggin did not inhibit the effects of the MCM, suggesting that BMPs were not the only active factor(s) in the MCM. Embryonic microglia isolated following maternal inflammation produced a variety of immune system cytokines and chemokines. One of these, interleukin-6 (IL-6), was tested for its ability to promote cholinergic differentiation. Although IL-6 alone did not mimic the action of MCM, neutralization of it inhibited MCM effectiveness. Thus, following maternal inflammation, a complex microglial-derived cocktail of factors can promote excess cholinergic differentiation in the embryonic BF.  相似文献   
56.
Data from 3991 records of museum collections representing 421 species of plants, arthropods, amphibians, fish, and primates were analyzed with GIS to identify areas of high species diversity and endemism in Amazonia. Of the 472 1 × 1° grid cells in Amazonia, only nine cells are included in the highest species diversity category (43–67 total species) and nine in the highest endemic species diversity category (4–13 endemic species). Over one quarter of the grid cells have no museum records of any of the organisms in our study. Little correspondence exists between the centers of species diversity identified by our collections-based data and those areas recommended for conservation in an earlier qualitative study of Amazonian biodiversity. Museum collections can play a vital role in identifying species-rich areas for potential conservation in Amazonia, but a concerted and structured effort to increase the number and distribution of collections is needed to take maximum advantage of the information they contain.  相似文献   
57.
Oxygen toxicity is a problem in diving which can have fatal consequences in the water. When divers use closed-circuit oxygen rebreathing apparatus they are taking only oxygen 100% and this hyperoxic exposure increases the generation of reactive oxygen species (ROS) in biological tissues. The objective of the present study is to evaluate the effects of hyperoxia on biomarkers of oxidative stress in closed-circuit oxygen military divers. Fifteen professional divers of Spanish Navy Diving Center participated in a training program which consisted of one-hour immersion at seven metres of depth breathing oxygen 100% with closed-circuit oxygen rebreathing apparatus. The training went on two or three times per week for the first six weeks and once a week for the last six weeks. Serum total antioxidant status (TAS), levels of glutathione peroxidase (GPx), nitrates (NO3 ?) and urinary concentrations of 15-isoprostane F2t were measured. The results show that TAS decreased significantly after 6 weeks (mean 1.38 versus 1.23 mmol/l), with a slight increase at the end (mean 1.31 mmol/l). GPx and F2-isoprostanes were significantly lower after 6 and 12 weeks and NO3 ? was significantly lower after 6 weeks and remained unchanged until the end. In summary, professional divers who use closed-circuit apparatus and therefore breathe oxygen 100%, do not suffer an important oxidative hyperoxia-induced stress, probably due an adaptive process after hyperoxia. The age and good physical form of the subjects studied could probably enhance the adaptive process to hyperoxia.  相似文献   
58.
Open-tip and liquid ion-exchanger microelectrodes were used to measure transapical membrane potential (Va), fractional voltage ratio (fa) and intracellular sodium and potassium activities (aiNa, aiK) in Mauremys caspica gallbladder under open circuit conditions. The average values (+/- SEM) for Va and fa were -32 +/- 3 and 0.20 +/- 0.03 mV respectively. aiNa and aiK were, respectively, 17 +/- 4 and 82 +/- 7 mM. These results suggest that the mechanisms of Na+ and K+ transport in this tissue are essentially similar to those observed in leaky epithelia in general.  相似文献   
59.
TDP‐43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP‐43 function at physiological levels both in vitro and in vivo. Interestingly, we find that mutations within the C‐terminal domain of TDP‐43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP‐43 loss‐ and gain‐of‐function effects. TDP‐43 gain‐of‐function effects in these mice reveal a novel category of splicing events controlled by TDP‐43, referred to as “skiptic” exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain‐of‐function mutation in endogenous Tardbp causes an adult‐onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain‐of‐function and skiptic exons in ALS patient‐derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP‐43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号