首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   22篇
  2020年   3篇
  2019年   3篇
  2016年   6篇
  2015年   11篇
  2014年   14篇
  2013年   6篇
  2012年   16篇
  2011年   8篇
  2010年   13篇
  2009年   16篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   11篇
  2004年   6篇
  2003年   10篇
  2002年   7篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1992年   7篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   15篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1974年   3篇
  1973年   5篇
  1972年   2篇
  1971年   3篇
  1969年   4篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1936年   2篇
  1932年   3篇
  1931年   2篇
  1929年   4篇
排序方式: 共有336条查询结果,搜索用时 31 毫秒
61.
The mammalian Na+/Ca2+ exchanger, NCX1.1, serves as the main mechanism for Ca2+ efflux across the sarcolemma following cardiac contraction. In addition to transporting Ca2+, NCX1.1 activity is also strongly regulated by Ca2+ binding to two intracellular regulatory domains, CBD1 and CBD2. The structures of both of these domains have been solved by NMR spectroscopy and x-ray crystallography, greatly enhancing our understanding of Ca2+ regulation. Nevertheless, the mechanisms by which Ca2+ regulates the exchanger remain incompletely understood. The initial NMR study showed that the first regulatory domain, CBD1, unfolds in the absence of regulatory Ca2+. It was further demonstrated that a mutation of an acidic residue involved in Ca2+ binding, E454K, prevents this structural unfolding. A contradictory result was recently obtained in a second NMR study in which Ca2+ removal merely triggered local rearrangements of CBD1. To address this issue, we solved the crystal structure of the E454K-CBD1 mutant and performed electrophysiological analyses of the full-length exchanger with mutations at position 454. We show that the lysine substitution replaces the Ca2+ ion at position 1 of the CBD1 Ca2+ binding site and participates in a charge compensation mechanism. Electrophysiological analyses show that mutations of residue Glu-454 have no impact on Ca2+ regulation of NCX1.1. Together, structural and mutational analyses indicate that only two of the four Ca2+ ions that bind to CBD1 are important for regulating exchanger activity.Cardiac contraction/relaxation relies upon Ca2+ fluxes across the plasma membrane (sarcolemma) of cardiomyocytes. Rapid Ca2+ influx (primarily through L-type Ca2+ channels) triggers the release of additional Ca2+ from the sarcoplasmic reticulum (SR),4 resulting in cardiomyocyte contraction. Removal of cytosolic Ca2+ by reuptake into the SR (through the SR Ca2+-ATPase) and expulsion from the cell (primarily through the Na+/Ca2+ exchanger, NCX1.1) results in relaxation (1). Altered Ca2+ cycling is observed in a number of pathophysiological situations including ischemia, hypertrophy, and heart failure (2). Understanding the function and regulation of NCX1.1 is thus of fundamental importance to understand cardiac physiology.NCX1.1 utilizes the electrochemical potential of the Na+ gradient to extrude Ca2+ in a ratio of three Na+ ions to one Ca2+ ion (3). In addition to transporting both Na+ and Ca2+, NCX1.1 is also strongly regulated by these two ions. Intracellular Na+ can induce NCX1.1 to enter an inactivated state, whereas Ca2+ bound to regulatory sites removes Na+-dependent inactivation and also activates Na+/Ca2+ exchange (3). These regulatory sites are located on a large cytoplasmic loop (∼500 residues located between transmembrane helices V and VI) containing two calcium binding domains (CBD1 and CBD2), which sense cytosolic Ca2+ levels. We have previously shown that Ca2+ binding to the primary site in CBD2 is required for full exchange regulation (4); CBD1, however, is a site of higher affinity and appears to dominate the activation of exchange activity by Ca2+.Both CBDs have an immunoglobulin fold formed from two antiparallel β sheets generating a β sandwich with a differing number of Ca2+ ions coordinated at the tip of the domain (4, 5). CBD1 binds four Ca2+ ions, whereas CBD2 binds only two Ca2+ ions. An initial NMR study revealed a local unfolding of the upper portion of CBD1 upon release of Ca2+ (6). In contrast, CBD2 did not display an unfolding response upon Ca2+ removal. A comparative analysis between CBDs revealed a difference in charge at residues in equivalent positions near the Ca2+ coordination site; Glu-454 in CBD1 is replaced by Lys-585 in CBD2. The unstructuring of CBD1 upon Ca2+ removal was alleviated by reversing the charge of the acidic residue (E454K) involved in Ca2+ coordination (6). Previously, we solved the structures of the Ca2+-bound and -free conformations of CBD2 and revealed a charge compensation mechanism involving Lys-585 (4). The positively charged lysine residue assumes the position of one of the Ca2+ ions upon Ca2+ depletion, permitting CBD2 to retain its overall fold (4). A similar phenomenon is predicted to take place in E454K-CBD1 mutant. In addition, Hilge et al. (6) showed that the E454K mutation of CBD1 decreases Ca2+ affinity to a level similar to that of CBD2 and suggested that the E454K mutation would cause the loss of primary regulation of NCX1.1 by CBD1.The significance of some of these observations is unclear as a recent NMR study (7) of CBD1 under more physiologically relevant conditions revealed no significant alteration in tertiary structure in the absence of Ca2+. It was hypothesized that Ca2+ binding induces localized conformational and dynamic changes involving several of the binding site residues. To clarify this issue, we solved the crystal structure of the E454K-CBD1 mutant and examined the functional effects of different CBD1 mutations in the full-length NCX1.1. The results indicate that charge compensation is indeed provided by the residue Lys-454 to replace one Ca2+, whereas the overall E454K-CBD1 structure is only slightly perturbed. The charge compensation, however, has no impact on Ca2+ regulation of NCX1.1.  相似文献   
62.
The intraspecific structure of the European anchovy (Engraulis encrasicolus) was studied on the basis of mitochondrial cytochrome b gene (cytb) fragment variability in 84 individuals from seven localities of the Black Sea and the Sea of Azov. The data on haplotype and nucleotide diversity and the values of neutrality tests suggested expansive growth of anchovy populations in the Azov-Black Sea basin. All samples from anchovy populations demonstrated a high level of haplotype diversity (Hd = 0.962). Two dominant haplotypes were identified, the frequencies of which were not directional, and they were present in all localities. Sequence analysis of the mitochondrial cytb gene fragment showed no differentiation between the Sea of Azov and the Black Sea subspecies.  相似文献   
63.
64.
65.
Recurrent respiratory papillomatosis (RRP) is caused by human papillomavirus type 6 (HPV-6) or HPV-11. Specific HLA-DR haplotypes DRB1*01:02 and DRB1*03:01 are associated with the development of RRP, disease severity, and Th2-like responses to HPV early proteins. Th1-like responses to HPV proteins have been shown to be protective in animal models. Therefore, we investigated the hypothesis that RRP patients have dysfunctional Th1-like, HPV-specific T cell responses. Using MHC class II tetramers, we identified immunogenic peptides within HPV-11 early proteins. Two distinct peptides (E6(113-132) and E2(1-20)) contained DRB1*01:02- or DRB1*03:01-restricted epitopes, respectively. An additional peptide (E2(281-300)) contained an epitope presented by both alleles. Peptide binding, tetramer, and proliferation assays identified minimal epitopes within these peptides. These epitopes elicited E2/E6-specific CD4(+) T cell responses in RRP patients and healthy control subjects, allowing the isolation of HPV-specific T cell lines using tetramers. The cytokine profiles and STAT signaling of these tetramer-positive T cells were measured to compare the polarization and responsiveness of HPV-specific T cells from patients with RRP and healthy subjects. HPV-specific IFN-γ secretion was substantially lower in T cells from RRP patients. HPV-specific IL-13 secretion was seen at modest levels in T cells from RRP patients and was absent in T cells from healthy control subjects. HPV-specific T cells from RRP patients exhibited reduced STAT-5 phosphorylation and reduced IL-2 secretion, suggesting anergy. Levels of STAT-5 phosphorylation and IFN-γ secretion could be improved through addition of IL-2 to HPV-specific T cell lines from RRP patients. Therapeutic vaccination or interventions aimed at restoring Th1-like cytokine responses to HPV proteins and reversing anergy could improve clinical outcomes for RRP patients.  相似文献   
66.
Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.14 M (0.7 mg 10B), (b) GB-10 (5 mg 10B), (c) GB-10 (50 mg 10B) and intravenous (iv), (d) BPA-f 0.14 M (15.5 mg 10B/kg), (e) GB-10 (50 mg 10B/kg), and (f) BPA-f (15.5 mg 10B/kg) + GB-10 (50 mg 10B/kg). At different post-administration times (13–85 min for ia and 3 h for iv), samples of blood, pathological synovium (target tissue), cartilage, tendon, muscle, and skin were taken for boron measurement by inductively coupled plasma mass spectrometry. The intra-articular administration protocols at <40 min post-administration both for BPA-f and GB-10, and intravenous administration protocols for GB-10 and [GB-10 + BPA-f] exhibited therapeutically useful boron concentrations (>20 ppm) in the pathological synovium. Dosimetric estimations suggest that BNCS would be able to achieve a therapeutically useful dose in pathological synovium without exceeding the radiotolerance of normal tissues in the treatment volume, employing boron carriers approved for use in humans. Radiobiological in vivo studies will be necessary to determine the actual therapeutic efficacy of BNCS to treat RA in an experimental model.  相似文献   
67.
The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice‐free Scandinavian refugium.  相似文献   
68.
Killer whales occur in Chilean waters, but their seasonality, diets, and overall distribution are poorly known. Here, we present data on group composition, site fidelity, and prey species of individual killer whales recorded in 63 sightings between 2004 and 2012 in the Chilean Patagonian fjords. Group sizes were small (mean = 5, SD = 2.5 for calf groups; mean = 3, SD = 1.5 for non-calf groups), and occurrence was significantly lower in summer months. Photographs enabled identification of 55 individuals from natural markings, and all resembled Southern Ocean type A killer whales. The species was transient in the area; the average presence was 1.7 days with 60 % of individuals seen only once. Occupancy was 3–44 days, and low levels of site fidelity were recorded (64 % of individuals were seen in only 1 year). Group composition at short time scales (3 months) remained stable, but we detected changes at longer time scales. Prey included fish, otariids, and seabirds. Twelve individual killer whales showed a broad dietary spectrum: 3 ate otariids and fish, 2 ate birds and otariids, and 7 ate otariids, birds, and possibly fish. Further research is needed to increase basic biological knowledge of these killer whales and to determine the relationship with type A killer whales from the Southern Ocean.  相似文献   
69.
70.
We have modeled modifications of a known ligand to the SARS-CoV-2 (COVID-19) protease, that can form a covalent adduct, plus additional ligand-protein hydrogen bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号