首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3274篇
  免费   299篇
  2022年   28篇
  2021年   57篇
  2020年   24篇
  2019年   35篇
  2018年   46篇
  2017年   22篇
  2016年   53篇
  2015年   112篇
  2014年   115篇
  2013年   180篇
  2012年   210篇
  2011年   191篇
  2010年   120篇
  2009年   105篇
  2008年   137篇
  2007年   147篇
  2006年   142篇
  2005年   134篇
  2004年   140篇
  2003年   146篇
  2002年   134篇
  2001年   60篇
  2000年   49篇
  1999年   62篇
  1998年   47篇
  1997年   21篇
  1996年   26篇
  1995年   27篇
  1994年   23篇
  1993年   24篇
  1992年   57篇
  1991年   45篇
  1990年   39篇
  1989年   34篇
  1988年   58篇
  1987年   39篇
  1986年   45篇
  1985年   39篇
  1984年   29篇
  1983年   28篇
  1982年   25篇
  1981年   36篇
  1980年   32篇
  1979年   28篇
  1978年   36篇
  1977年   28篇
  1976年   33篇
  1975年   33篇
  1974年   30篇
  1972年   25篇
排序方式: 共有3573条查询结果,搜索用时 15 毫秒
971.
Iron and copper play major roles in biological systems, catalyzing free radical production and consequently causing damage. The relatively high levels of these metals, which are mobilized into the coronary flow following prolonged ischemia, have been incriminated as key players in reperfusion injury to the heart. In the present communication we investigated other roles of iron - providing protection to the ischemic heart via preconditioning (PC). PC was accomplished by subjecting isolated rat hearts to three episodes of 2 min ischemia separated by 3 min of reperfusion. Prolonged ischemia followed the PC phase. PC hearts (group I) were compared to hearts subjected to normal perfusion (group II, no ischemia) and to ischemia without PC (group III). Group I showed a marked improvement in the recovery of hemodynamic function vs. group III. Biochemical parameters further substantiated the PC protection provided to group I against prolonged ischemia. Correspondingly, group I presented markedly lower re-distribution and mobilization of iron and copper into the coronary flow, following prolonged ischemia, as evinced from the decrease in total levels, and in the 'free' fraction of iron and copper. During the PC phase no loss of cardiac function was observed. A small wave of re-distribution and mobilization of iron (typically less than 4-8% of the value of 35 min ischemia) was recorded. The cellular content of ferritin (Ft) measured in the heart was significantly higher in group I than in group III (0.90 and 0.54 microg/mg, respectively). Also, iron-saturation of Ft was significantly lower for PC hearts, compared to both groups II and III (0.22 vs. 0.32 and 0.31 microg/mg, for 35 min ischemia, respectively). These findings are in accord with the proposal that intracellular re-distribution and mobilization of small levels of iron, during PC, cause rapid accumulation of ferritin - the major iron-storage protein. It is proposed that iron play a dual role: (i) It serves as a signaling pathway for the accumulation of Ft following the PC phase. This iron is not involved in cardiac injury, but rather prepares the heart against future high levels of 'free' iron, thus reducing the degree of myocardial damage after prolonged ischemia. (ii) High levels of iron (and copper) are mobilized following prolonged ischemia and cause tissue damage.  相似文献   
972.
Plasmodium falciparum infection kills more than 1 million children annually. Novel drug targets are urgently being sought as multidrug resistance limits the range of treatment options for this protozoan pathogen. PfHT1, the major hexose transporter of P. falciparum is a promising new target. We report detailed structure-function studies on PfHT1 using site-directed mutagenesis approaches on residues located in helix V (Q169N) and helix VII ((302)SGL --> AGT). Studies with hexose analogues in these mutants have established that hexose recognition and permeation are intimately linked to these helices. A "fructose filter" effect results from the Q169N mutation (abolishing fructose uptake but preserving affinity and transport of glucose, as reported in Woodrow, C. J., Burchmore, R. J. S., and Krishna, S. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9931-9936). Associated changes in competition for glucose uptake by C-2, C-3, and C-6 glucose analogues compared with native PfHT1 indicate subtle alterations in substrate interaction in this mutant. The K(m) values for glucose uptake in helix VII mutants are also similar to native PfHT1. Hydrogen bonding to positions C-5 and C-6 in glucose analogues becomes relatively more important in these mutants compared with native PfHT1. To increase understanding of hexose permeation pathways in PfHT1, we have developed the first three-dimensional model for PfHT1. As predicted for GLUT1, the principal mammalian glucose transporter, PfHT1 contains a main and an auxiliary channel. After modeling, the Q169N mutation leads predominantly to local structural changes, including displacement of neighboring helix IV. The (302)SGL position in helix VII lies in the same plane as Gln-169 in helix V but is also adjacent to the main hexose permeation pathway, consistent with results from experiments mutating this triplet motif. Furthermore, there are obvious structural and functional differences between GLUT1 and PfHT1 that can now be explored in detail using the approaches presented here. The development of specific inhibitors for PfHT1 will also be aided by these insights.  相似文献   
973.
We previously identified 10 exon deletion ERbeta variant mRNAs in various human tissues [FEBS Lett. 516 (2002) 133]. In the current study, we have investigated the expression of these variant mRNAs in normal breast tissues and their alterations in cancer tissues. A total of 43 cancer tissues in comparison with their matched normal tissues were analyzed by RT PCR using the newly developed 'Splice Targeted Primer Approach'. The data presented here show that normal breast tissues express 9 of the 10 identified variant mRNAs. Of the nine variants, the mRNAs with exons 5-6 deletions were significantly decreased ( approximately 80%) in a large majority of cancer tissues (two-sided paired t-test, n=43 patients, P<0.00001). The expression of ERbeta exon 5Delta, that could potentially have transactivating property in the absence of hormone, was changed differently among different grade tumors (analysis of variance F-test, n=43 patients, P=0.0452; Kruskal-Wallis test, n=43 patients, P=0.0356). When change in expression of ERbeta exon 5Delta mRNA levels was used as a categorical variable, a significant association was found between the change status (increase, no change, decrease) of this variant and grade of the tumor (Fischer's exact test, n=43 patients, P=0.0129). In particular, it was significantly increased in grade III tumors and decreased in grade II tumors. This variant was also changed differently in pre- and post-menopausal women. Its expression levels were increased in the tumors of post-menopausal women (mean change=3.6685), while they were decreased in pre-menopausal women (mean change=-24.3662). Thus a significant association was observed between the expression of this variant and menopausal status (a two-sided paired t-test, n=43 patients, P=0.03). Other variants were either expressed at very low frequency or not significantly altered.  相似文献   
974.
975.
Despite considerable interest in the isolation of mAbs with potent neutralization activity against primary HIV-1 isolates, both for identifying useful targets for vaccine development and for the development of therapeutically useful reagents against HIV-1 infection, a relatively limited number of such reagents have been isolated to date. Human mAbs (hu-mAbs) are preferable to rodent mAbs for treatment of humans, but isolation of hu-mAbs from HIV-infected subjects by standard methods of EBV transformation of B cells or phage display of Ig libraries is inefficient and limited by the inability to control or define the original immunogen. An alternative approach for the isolation of hu-mAbs has been provided by the development of transgenic mice that produce fully hu-mAbs. In this report, we show that immunizing the XenoMouse G2 strain with native recombinant gp120 derived from HIV(SF162) resulted in robust humoral Ab responses against gp120 and allowed the efficient isolation of hybridomas producing specific hu-mAbs directed against multiple regions and epitopes of gp120. hu-mAbs possessing strong neutralizing activity against the autologous HIV(SF162) strain were obtained. The epitopes recognized were located in three previously described neutralization domains, the V2-, V3- and CD4-binding domains, and in a novel neutralization domain, the highly variable C-terminal region of the V1 loop. This is the first report of neutralizing mAbs directed at targets in the V1 region. Furthermore, the V2 and V3 epitopes recognized by neutralizing hu-mAbs were distinct from those of previously described human and rodent mAbs and included an epitope requiring a full length V3 loop peptide for effective presentation. These results further our understanding of neutralization targets for primary, R5 HIV-1 viruses and demonstrate the utility of the XenoMouse system for identifying new and interesting epitopes on HIV-1.  相似文献   
976.
Predicting the time course of in vivo biodegradation is a key issue in the design of an increasing number of biomedical applications such as sutures, tissue analogs and drug-delivery devices. The design of such biodegradable devices is hampered by the absence of quantitative models for the enzymatic erosion of solid protein matrices. In this work, we derive and simulate a reaction diffusion model for the enzymatic erosion of fibrillar gels that successfully reproduces the main qualitative features of this process. A key aspect of the proposed model is the incorporation of steric hindrance into the standard Michaelis-Menten scheme for enzyme kinetics. In the limit of instantaneous diffusion, the model equations are analogous to the standard equations for enzymatic degradation in solution. Invoking this analogy, the total quasi-steady-state approximation is used to derive approximate analytical solutions that are valid for a wide range of in vitro conditions. Using these analytical approximations, an experimental-theoretical method is derived to unambiguously estimate all the kinetic model parameters. Moreover, the analytical approximations correctly describe the characteristic hyperbolic dependence of the erosion rate on enzyme concentration and the zero-order erosion of thin fibers. For definiteness, the analysis of published experimental results of enzymatic degradation of fibrillar collagen is demonstrated, and the role of diffusion in these experiments is elucidated.  相似文献   
977.
Yassin L  Samson AO  Halevi S  Eshel M  Treinin M 《Biochemistry》2002,41(41):12329-12335
The deg-3(u662) mutation is a degeneration-causing mutation in a Caenorhabditis elegans nicotinic acetylcholine receptor. In a large screen for mutations that suppress the deleterious effects of this mutation we identified 32 mutations in the deg-3 gene. Among these, 11 are missense mutations, affecting seven residues within the extracellular domain or the membrane-spanning domains. All of these mutations greatly reduce the degeneration-causing activity of deg-3(u662). All but one of these mutations cause defective localization of the DEG-3 protein, as seen in immunohistochemical analysis. Thus our screen identifies multiple residues within the nicotinic acetylcholine receptor needed for normal folding, assembly, or trafficking of this receptor. Interestingly, these mutations lead to distinct localization defects suggesting differences in their effect on DEG-3's maturation process. Specifically, mutations in the extracellular domain lead to a phenotype more severe than mutations in the membrane-spanning domains. Differences in the effects of the mutations are also predicted by homology-based modeling, showing that some mutations in the extracellular domain are likely to disrupt the native fold of the protein, while others are likely to disrupt trafficking.  相似文献   
978.
Bera S  Thampi P  Cho WJ  Abraham EC 《Biochemistry》2002,41(41):12421-12426
An autosomal dominant congenital cataract associated with a missense mutation, Arg-116 to Cys (R116C), in the coding sequence of human alphaA-crystallin has been reported. Subsequent study of this mutant, generated by site-directed mutagenesis, showed significant changes in secondary and tertiary structures, partial loss of chaperone activity, and substantially increased oligomeric size. The study presented here aims to show whether these changes are due to the loss of a positive charge at this position or due to the presence of an extra Cys. To show this, Arg-116 in alphaA-crystallin was mutated to Lys (R116K), Cys (R116C), Gly (R116G), and Asp (R116D) and expressed in Escherichia coli cells. The wild-type (alphaA-wt) and mutant proteins were purified by size exclusion chromatography and characterized by measurements of circular dichroism, intrinsic tryptophan fluorescence, and TNS fluorescence and by determination of molecular masses and chaperone function which was assessed as the ability to suppress target protein aggregation or enhance target protein refolding. Mutation of Arg-116 to a Cys or Gly showed very similar changes in structure, oligomerization, and chaperone function which suggest that the presence of this Cys per se is not the cause of the changes. The R116K mutant, on the other hand, had nearly the same structure, oligomeric size, and chaperone function as alphaA-wt, whereas the mutant with an acidic amino acid in this position, R116D, showed drastic changes in protein structure. Thus, a positive charge must be preserved at this position for the structural and functional integrity of alphaA-crystallin.  相似文献   
979.
980.
Much of the sophisticated chemistry of life is accomplished by multicomponent complexes, which act as molecular machines. Intrinsic to their accuracy and efficiency is the energy that is supplied by hydrolysis of nucleoside triphosphates. Conditions that deplete energy sources should therefore cause decay and death. But studies on organisms that are exposed to prolonged stress indicate that this fate could be circumvented through the formation of highly ordered intracellular assemblies. In these thermodynamically stable structures, vital components are protected by a physical sequestration that is independent of energy consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号