首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8943篇
  免费   769篇
  国内免费   1篇
  2024年   12篇
  2023年   39篇
  2022年   109篇
  2021年   228篇
  2020年   113篇
  2019年   152篇
  2018年   188篇
  2017年   161篇
  2016年   291篇
  2015年   469篇
  2014年   510篇
  2013年   546篇
  2012年   776篇
  2011年   736篇
  2010年   459篇
  2009年   423篇
  2008年   568篇
  2007年   569篇
  2006年   531篇
  2005年   535篇
  2004年   491篇
  2003年   457篇
  2002年   429篇
  2001年   73篇
  2000年   51篇
  1999年   104篇
  1998年   111篇
  1997年   71篇
  1996年   57篇
  1995年   58篇
  1994年   47篇
  1993年   52篇
  1992年   41篇
  1991年   32篇
  1990年   38篇
  1989年   26篇
  1988年   29篇
  1987年   20篇
  1986年   17篇
  1985年   15篇
  1984年   19篇
  1983年   12篇
  1982年   11篇
  1981年   11篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
排序方式: 共有9713条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
Female mammals are functional mosaics of their parental X-linked gene expression due to X chromosome inactivation (XCI). This process inactivates one copy of the X chromosome in each cell during embryogenesis and that state is maintained clonally through mitosis. In mice, the choice of which parental X chromosome remains active is determined by the X chromosome controlling element (Xce), which has been mapped to a 176-kb candidate interval. A series of functional Xce alleles has been characterized or inferred for classical inbred strains based on biased, or skewed, inactivation of the parental X chromosomes in crosses between strains. To further explore the function structure basis and location of the Xce, we measured allele-specific expression of X-linked genes in a large population of F1 females generated from Collaborative Cross (CC) strains. Using published sequence data and applying a Bayesian “Pólya urn” model of XCI skew, we report two major findings. First, inter-individual variability in XCI suggests mouse epiblasts contain on average 20–30 cells contributing to brain. Second, CC founder strain NOD/ShiLtJ has a novel and unique functional allele, Xceg, that is the weakest in the Xce allelic series. Despite phylogenetic analysis confirming that NOD/ShiLtJ carries a haplotype almost identical to the well-characterized C57BL/6J (Xceb), we observed unexpected patterns of XCI skewing in females carrying the NOD/ShiLtJ haplotype within the Xce. Copy number variation is common at the Xce locus and we conclude that the observed allelic series is a product of independent and recurring duplications shared between weak Xce alleles.  相似文献   
135.
136.
137.
Wide-range geographically discontinuous distributions have long intrigued scientists. We explore the role of ecology, geology, and dispersal in the formation of these large-scale disjunctions, using the angiosperm tribe Putorieae (Rubiaceae) as a case study. From DNA sequences of nuclear ITS and six plastid markers, we inferred a phylogeny with 65% of all known Putorieae species. Divergence times, ancestral ranges, and diversification rate shifts were then estimated using Bayesian inference. We further explored species climatic tolerances and performed ancestral niche reconstruction to discriminate among alternative speciation modes, including geographical and ecological vicariance, and ecogeographical, ecological, and dispersal-mediated speciation. As a result, we identified seven major clades in Putorieae, some of which exhibit striking geographical disjunctions, matching the Rand Flora pattern, with sister species in the Canary Islands andeastern and southern Africa. Initial diversification within the tribe occurred in the early Miocene, coincident with a period of climate warming; however, most clades diverged within the last 10 Myr. Aridification and high extinction rates, coupled with ecological vicariance, explain the oldest disjunctions. Adaptation to new environmental conditions, after allopatry, is observed in several clades. Dispersal, either long-distance or via corridors made available by mountain uplift, is behind the most recent disjunctions. Some of these events were followed by ecological speciation and rapid diversification, with species becoming adapted to xeric or increasingly colder continental climates. We show that an integrative approach may help discriminate among speciation modes invoked to explain disjunctions at macroevolutionary time scales, even when extinction has erased the signature of past events.  相似文献   
138.
Purpose

The aim of this case control study was to evaluate the prognostic value of automatically quantified retinal vessel tortuosity from fundus images and vessel density from OCT-A in Fabry disease and to evaluate the correlation of these with systemic disease parameters.

Methods

Automatically quantified perimacular retinal vessel tortuosity (MONA REVA software), acquired by fundus imaging, and perifoveal retinal vessel density, acquired by optic coherence tomography angiography (OCT-A) were compared between 26 FD patients and 26 controls. Gender and FD phenotype were analyzed to the obtained retinovascular data and correlated to the Mainz severity score index (MSSI) and plasma lyso-Gb3.

Results

Automatically quantified retinal vessel tortuosity indices of FD patients were significantly lower, reflecting an increased vessel tortuosity, compared to controls (p = 0.008). Males with a classical phenotype showed significantly lower retinal vessel tortuosity indices compared to males with an oligosymptomatic phenotype and females with a classical or oligosymptomatic phenotype (p < 0.001). The retinal vessel tortuosity index correlated significantly with systemic disease severity parameters [global MSSI (r = − 0.5; p < 0.01), cardiovascular MSSI (r = − 0.5; p < 0.01), lyso-Gb3 (r = − 0.6; p < 0.01)].

Conclusion

We advocate fundus imaging based automatically quantified retinal vessel tortuosity index over OCT-A imaging as it is a quick, non-invasive, easily assessable, objective and reproducible marker.

  相似文献   
139.
140.
Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second‐generation fluorogenic substrate for β‐galactosidase and multi‐parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence‐associated β‐galactosidase (SA‐βGal) activity with advancing donor age. The greatest age‐associated increases were observed in CD8+ T‐cell populations, in which the fraction of cells with high SA‐βGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA‐βGal activity, but not those with low SA‐βGal activity, were found to exhibit features of telomere dysfunction‐induced senescence and p16‐mediated senescence, were impaired in their ability to proliferate, developed in various T‐cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号