首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   15篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1983年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
91.
A beta-galactosidase (from Aspergillus oryzae) preparation viz. EPRP (enzyme precipitated and rinsed with propanol), obtained by the removal of bulk water by precipitation with n-propanol, showed higher biological activity than the lyophilized powder. FT-IR study confirmed that EPRP had retained the alpha-helical content of the native structure better than the lyophilized form. Use of this formulation of beta-galactosidase under low water conditions (temperature 55 degrees C, reaction time of 4 h) gave enantioselectivity, E > 1000 for the stereoselective synthesis of (R)-(1-phenylethyl)-beta-D-galactopyranoside, starting from racemic 1-phenylethanol and D-galactose. For racemic 2-octanol also, EPRP worked better. Under similar conditions, (R)-(2-octyl)-beta-D-galactopyranoside was formed with an enantioselectivity, E = 38.  相似文献   
92.
Protoplasts and mitochondria were isolated from leaves of homozygous barley ( Hordeum vulgare L.) mutant deficient in glycine decarboxylase complex (GDC, EC 2.1.2.10) and wild-type plants. The photosynthetic rates of isolated protoplasts from the mutant and wild-type plants under saturating CO2 were similar, but the respiratory rate of the mutant was two-fold higher. Respiration in the mutant plants was much more strongly inhibited by antimycin A than in wild-type plants and a low level of the alternative oxidase protein was found in mitochondria. The activities of NADP- and NAD-dependent malate dehydrogenases were also increased in mutant plants, suggesting an activation of the malate-oxaloacetate exchange for redox transfer between organelles. Mutant plants had elevated activities of NADH- and NADPH-dependent glyoxylate/hydroxypyruvate reductases, which may be involved in oxidizing excess NAD(P)H and the scavenging of glyoxylate. We estimated distribution of pools of adenylates, NAD(H) and NADP(H) between chloroplasts, cytosol and mitochondria. Under photorespiratory conditions, ATP/ADP and NADPH/NADP ratios in the mutant were higher in chloroplasts as compared to wild-type plants. The cytosolic NADH/NAD ratio was increased, whereas the ratio in mitochondria decreased. It is concluded that photorespiration serves as an effective redox transfer mechanism from the chloroplast. Plants with a lowered GDC content are deficient in this mechanism, which leads to over-reduction and over-energization of the chloroplasts.  相似文献   
93.
The role of nitrate reduction to produce nitric oxide (NO) and its subsequent oxidation by oxyhaemoglobin as a mechanism to maintain plant cell energetics during hypoxia is examined. Nitrate reduction in hypoxic conditions can be considered as an alternative respiratory pathway, with nitrate as an intermediate electron acceptor, contributing to the oxidation of NADH. NO, produced in the reaction, does not accumulate due to the induction of hypoxia-induced (class 1) haemoglobins. These haemoglobins remain in the oxyhaemoglobin form, even at oxygen tensions two orders of magnitude lower than necessary to saturate cytochrome c oxidase. They act, probably in conjunction with a flavoprotein, as NO dioxygenases converting NO back to nitrate, consuming NAD(P)H in the process. The overall system oxidizes 2.5 moles of NADH per one mole of nitrate recycled during the reaction, leading to the maintenance of redox and energy status during hypoxia and resulting in the reduced production of ethanol and lactic acid.  相似文献   
94.
Although most Src family tyrosine kinases are modified by palmitoylation as well as myristoylation, Src itself is only myristoylated. Dual acylation is important for attachment to liquid-ordered microdomains or lipid rafts. Accordingly, Src is excluded from lipid rafts in fibroblasts. Evidence of partial genetic redundancy between Src and Fyn for brain-specific targets suggests that these two kinases may occupy overlapping subcellular locations. Neuronal Src (NSrc), an alternative isoform of Src with a 6-amino acid insert in the Src homology 3 domain, is highly expressed in neurons. We investigated whether this structural difference in NSrc allows it to associate with lipid rafts. We found that perinatal mouse brains express predominantly NSrc, which is partly (10-20%) in a lipid raft fraction from brain but not fibroblasts. The association of Src with brain lipid rafts does not depend on the NSrc insert but depends on the amino-terminal myristoylation signal. A crude lipid fraction from brain promotes NSrc entry into rafts in vitro. Moreover, lipid raft-localized NSrc is more catalytically active than NSrc from the soluble fraction, possibly because raft localization alters access to other tyrosine kinases and phosphatases. These findings suggest that NSrc may be involved in signaling from lipid rafts in mouse brain.  相似文献   
95.
The exposure of detached leaves of C3 plants (pea, barley) and C4 plant (maize) to 5 m M Pb (NO3)2 for 24 h caused a reduction of their photosynthetic activity by 40–60%, whereas the respiratory rate was stimulated by 20–50%. Mitochondria isolated from Pb2+-treated pea leaves oxidized substrates (glycine, succinate, malate) at higher rates than mitochondria from control leaves. The respiratory control (RCR) and the ADP/O ratio were not affected. Pb2+ caused an increase in ATP content and the ATP/ADP ratio in pea and maize leaves. Rapid fractionation of barley protoplasts incubated at low and high CO2 conditions, indicated that the increased ATP/ADP ratio in Pb2+-treated leaves resulted mainly from the production of mitochondrial ATP. The measurements of membrane potential of mitochondria with a TPP+-sensitive electrode further showed that mitochondria isolated from Pb2+-treated leaves had at least as high membrane potential as mitochondria from control leaves. The activity of NAD-malate dehydrogenase in the protoplasts from barley leaves treated with Pb2+ was 3-fold higher than in protoplasts from control leaves. The activities of photorespiratory enzymes NADH-hydroxypyruvate reductase and glycolate oxidase as well as of NAD-malic enzyme were not affected. The presented data indicate that stimulation of respiration in leaves treated by lead is in a close relationship with activation of malate dehydrogenase and stimulation of the mitochondrial ATP production. Thus, respiration might fulfil a protective role during heavy metal exposure.  相似文献   
96.
The formation of ethylene under different O(2) concentrations and upon addition of nitric oxide (NO) donor, sodium nitroprusside (SNP), was determined using maize (Zea mays L.) cell lines over-expressing (Hb+) or down-regulating (Hb-) hypoxically inducible (class-1) hemoglobin (Hb). Under all treatments, ethylene levels in the Hb- line were 5 to 6.5 times the levels in Hb+ and four to five times the levels in the wild type. Low oxygen partial pressures impaired ethylene formation in maize cell suspension cultures. 1-Amino-cyclopropane-1-carboxylic acid (ACC) oxidase (E.C. 1.14.17.4) mRNA levels did not vary, either between lines or between treatments. There was, however, significantly enhanced ACC oxidase (ACO) activity in the Hb- line relative to the wild type and the Hb+ line. ACO activity in the Hb- line increased under hypoxic conditions and significantly increased upon treatment with NO under normoxic conditions. The results suggest that limiting class-1 hemoglobin protein synthesis increases ethylene formation in maize suspension cells, possibly via the modulation of NO levels.  相似文献   
97.
Respiration of barley protoplasts before and after illumination   总被引:1,自引:0,他引:1  
Respiratory O2 consumption was investigated in dark-adapted barley (Hordeum vulgare L. cv. Gunilla) protoplasts and after illumination for 10 min at high and very low CO2 in the presence of respiratory and photorespiratory inhibitors. In dark-adapted protoplasts no difference was observed between inhibitor treatments in high and very low CO2. The respiratory rate increased somewhat after illumination and a difference in responce to inhibitors was in some cases observed between high and very low CO2. Thus, the operation of the mitochondrial electron transport chain is affected following a period of active photosynthesis. In all situations tested, oligomycin inhibited respiratiory O2 uptake indicating that respiration of mitochondria in protoplasts is not strictly ADP limited. Antimycin A inhibited respiration more in dark-adapted protoplasts than after illumination whereas SHAM gave the opposite response. Rotenone inhibited respiration both in dark-adapted protoplasts (about 30%) and after illumination where the inhibition was much greater in very low CO2 (50%) than in high CO2 (10%). After illumination in very low CO2. SHAM + rotenone inhibited respiration almost completely (70%). Photorespiratory inhibitors had very small effect on O2 consumption in darkness. After illumination the effect of aminoacetonitrile (AAN) was also very low whereas α-hydroxypyridine-2-methane sulphonate (HPMS) in photorespiratory conditions inhibited O2 uptake much stronger (35%). The addition of glyoxylate enhanced respiration in the presence of HPMS up to the control level suggesting that alternative pathways of glyoxylate conversion might be operating. The differences in inhibitor responses may reflect fine mechanisms for the regulation of energetic balance in the plant cell which consists of switching from electron transport coupled to ATP production to non-coupled transport. Photorespiratory flux is also very flexible, and the suppression of glycine decarboxylation can induce bypass reactions of glyoxylate metabolism.  相似文献   
98.
UDP-D-galactose 4-epimerase of the unicellular red alga Galdieria sulphuraria has been purified to apparent electrophoretic homogeneity by chromatography on DEAE-Fractogel, hydroxylapatite and by affinity chromatography on Dyematrex Orange. The holoenzyme is a homodimer with an apparent molecular mass of 83 and 76 kDa as determined by gelfiltration and by sucrose gradient centrifugation, respectively. The size of the subunits was 42 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The 4-epimerase from G. sulphuraria does not require external NAD for activity, unlike the enzyme from some other organisms, and inhibition by NADH was not observed. The apparent Km for UDP-D-galactose was 64 μ M . The pH optimum was at 8 and the apparent equilibrium constant for UDP-Glc/UDP-Gal was 3.5. The enzyme in crude as well as in purified samples was unusually stable and was not inactivated even on incubation at 46°C for several hours.  相似文献   
99.
Alzheimer’s is a neural disorder causing gradual loss in structure and function of nerve cell. To treat such disorders, c-Jun N-terminal Kinase (JNK) Pathway inhibitors were developed by representing chemical compounds that were used to inhibit the JNK signaling pathways. DLK is the stress sensor and implicating as regulatory factor in JNK pathway. Therefore, in the present investigation, pharmacophore screening was tried to identify the chemical compounds that involving inhibition of DLK proteins. To explore the pharmacophore region and mode of binding with DLK protein, N- (I H-pyrazol-3-y l) pyridin-2-aminer inhibitors were docked with DLK. Results reveal the information on the interaction mechanism of protein and ligand with chemical characteristics required to inhibit DLK protein. Such predicted information (AAAARH) was used as query to find out potential novel lead compounds sourced from public database. As an outcome of 65 compounds were listed based on the fitness score (2≥), and were subjected to glide HTVS.SP and XP. Best performing 5 lead compounds were shortlisted for dynamic simulations. This exhibited a constant RMSD over 20?ns of timescale.  相似文献   
100.
The CHKB gene encodes choline kinase β, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb−/− mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/− mice. Unlike wildtype mice, 60% of the Chkb+/− and all Chkb−/− mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/− and Chkb−/− hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb−/− hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/− and Chkb−/− mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号