首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
  136篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   15篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1983年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
91.
The CHKB gene encodes choline kinase β, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb−/− mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/− mice. Unlike wildtype mice, 60% of the Chkb+/− and all Chkb−/− mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/− and Chkb−/− hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb−/− hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/− and Chkb−/− mice.  相似文献   
92.
Alzheimer’s is a neural disorder causing gradual loss in structure and function of nerve cell. To treat such disorders, c-Jun N-terminal Kinase (JNK) Pathway inhibitors were developed by representing chemical compounds that were used to inhibit the JNK signaling pathways. DLK is the stress sensor and implicating as regulatory factor in JNK pathway. Therefore, in the present investigation, pharmacophore screening was tried to identify the chemical compounds that involving inhibition of DLK proteins. To explore the pharmacophore region and mode of binding with DLK protein, N- (I H-pyrazol-3-y l) pyridin-2-aminer inhibitors were docked with DLK. Results reveal the information on the interaction mechanism of protein and ligand with chemical characteristics required to inhibit DLK protein. Such predicted information (AAAARH) was used as query to find out potential novel lead compounds sourced from public database. As an outcome of 65 compounds were listed based on the fitness score (2≥), and were subjected to glide HTVS.SP and XP. Best performing 5 lead compounds were shortlisted for dynamic simulations. This exhibited a constant RMSD over 20?ns of timescale.  相似文献   
93.
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.  相似文献   
94.
The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders.  相似文献   
95.
The role of nitrate reduction to produce nitric oxide (NO) and its subsequent oxidation by oxyhaemoglobin as a mechanism to maintain plant cell energetics during hypoxia is examined. Nitrate reduction in hypoxic conditions can be considered as an alternative respiratory pathway, with nitrate as an intermediate electron acceptor, contributing to the oxidation of NADH. NO, produced in the reaction, does not accumulate due to the induction of hypoxia-induced (class 1) haemoglobins. These haemoglobins remain in the oxyhaemoglobin form, even at oxygen tensions two orders of magnitude lower than necessary to saturate cytochrome c oxidase. They act, probably in conjunction with a flavoprotein, as NO dioxygenases converting NO back to nitrate, consuming NAD(P)H in the process. The overall system oxidizes 2.5 moles of NADH per one mole of nitrate recycled during the reaction, leading to the maintenance of redox and energy status during hypoxia and resulting in the reduced production of ethanol and lactic acid.  相似文献   
96.
Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles.  相似文献   
97.
Transforming growth factor-β superfamily ligands, including activin and myostatin, modulate body composition, islet function, and glucose homeostasis. Their bioactivity is controlled by the antagonists follistatin (FST) and FST like-3 (FSTL3). The hypothesis tested was that FST and FSTL3 have distinct roles in regulating body composition, glucose homeostasis, and islet function through regulation of activin and myostatin bioactivity. Three genetic mutant mouse lines were created. FSTL3 knockout (FSTL3 KO), a mouse line producing only the FST288 isoform (FST288-only) and a double mutant (2xM) in which the lines were crossed. FST288-only males were lighter that wild-type (WT) littermates while FSTL3 KO and 2xM males had reduced perigonadal fat pad weights. However, only 2xM mice had increased whole body fat mass and decreased lean mass by quantitative nuclear magnetic resonance (qNMR). Fasting glucose levels in FSTL3 WT and KO mice were lower than FST mice in younger animals but were higher in older mice. Serum insulin and pancreatic insulin content in 2xM mice was significantly elevated over other genotypes. Nevertheless, 2xM mice were relatively insulin resistant and glucose intolerant compared to FST288-only and WT mice. Fractional islet area and proportion of β-cells/islet were increased in FSTL3 KO and 2xM, but not FST288-only mice. Despite their larger size, islets from FSTL3 KO and 2xM mice were not functionally enhanced compared to WT mice. These results demonstrate that body composition and glucose homeostasis are differentially regulated by FST and FSTL3 and that their combined loss is associated with increased fat mass and insulin resistance despite elevated insulin production.  相似文献   
98.
99.
The exposure of detached leaves of C3 plants (pea, barley) and C4 plant (maize) to 5 m M Pb (NO3)2 for 24 h caused a reduction of their photosynthetic activity by 40–60%, whereas the respiratory rate was stimulated by 20–50%. Mitochondria isolated from Pb2+-treated pea leaves oxidized substrates (glycine, succinate, malate) at higher rates than mitochondria from control leaves. The respiratory control (RCR) and the ADP/O ratio were not affected. Pb2+ caused an increase in ATP content and the ATP/ADP ratio in pea and maize leaves. Rapid fractionation of barley protoplasts incubated at low and high CO2 conditions, indicated that the increased ATP/ADP ratio in Pb2+-treated leaves resulted mainly from the production of mitochondrial ATP. The measurements of membrane potential of mitochondria with a TPP+-sensitive electrode further showed that mitochondria isolated from Pb2+-treated leaves had at least as high membrane potential as mitochondria from control leaves. The activity of NAD-malate dehydrogenase in the protoplasts from barley leaves treated with Pb2+ was 3-fold higher than in protoplasts from control leaves. The activities of photorespiratory enzymes NADH-hydroxypyruvate reductase and glycolate oxidase as well as of NAD-malic enzyme were not affected. The presented data indicate that stimulation of respiration in leaves treated by lead is in a close relationship with activation of malate dehydrogenase and stimulation of the mitochondrial ATP production. Thus, respiration might fulfil a protective role during heavy metal exposure.  相似文献   
100.
Protoplasts and mitochondria were isolated from leaves of homozygous barley ( Hordeum vulgare L.) mutant deficient in glycine decarboxylase complex (GDC, EC 2.1.2.10) and wild-type plants. The photosynthetic rates of isolated protoplasts from the mutant and wild-type plants under saturating CO2 were similar, but the respiratory rate of the mutant was two-fold higher. Respiration in the mutant plants was much more strongly inhibited by antimycin A than in wild-type plants and a low level of the alternative oxidase protein was found in mitochondria. The activities of NADP- and NAD-dependent malate dehydrogenases were also increased in mutant plants, suggesting an activation of the malate-oxaloacetate exchange for redox transfer between organelles. Mutant plants had elevated activities of NADH- and NADPH-dependent glyoxylate/hydroxypyruvate reductases, which may be involved in oxidizing excess NAD(P)H and the scavenging of glyoxylate. We estimated distribution of pools of adenylates, NAD(H) and NADP(H) between chloroplasts, cytosol and mitochondria. Under photorespiratory conditions, ATP/ADP and NADPH/NADP ratios in the mutant were higher in chloroplasts as compared to wild-type plants. The cytosolic NADH/NAD ratio was increased, whereas the ratio in mitochondria decreased. It is concluded that photorespiration serves as an effective redox transfer mechanism from the chloroplast. Plants with a lowered GDC content are deficient in this mechanism, which leads to over-reduction and over-energization of the chloroplasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号