首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   90篇
  2024年   2篇
  2023年   11篇
  2022年   26篇
  2021年   72篇
  2020年   28篇
  2019年   28篇
  2018年   35篇
  2017年   37篇
  2016年   32篇
  2015年   62篇
  2014年   53篇
  2013年   56篇
  2012年   70篇
  2011年   76篇
  2010年   43篇
  2009年   24篇
  2008年   50篇
  2007年   53篇
  2006年   46篇
  2005年   37篇
  2004年   36篇
  2003年   38篇
  2002年   28篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1941年   1篇
排序方式: 共有974条查询结果,搜索用时 17 毫秒
931.
932.
Brief (1–100 min) irradiations with three different ultraviolet-B (UV-B) and ultraviolet-C (UV-C) wave bands induced increases the UV-absorbing pigments extracted from cucumber ( Cucumis sativus L.) and Arabidopsis . Spectra of methanol/1% HCl extracts from cucumber hypocotyl segments spanning 250–400 nm showed a single defined peak at 317 nm. When seedlings were irradiated with 5 kJ m−2 UV-B radiation containing proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm; full-spectrum UV-B, FS-UVB), tissue extracts taken 24 h after irradiation showed an overall increase in absorption (91% increase at 317 nm) with a second defined peak at 263 nm. Irradiation with 1.1 kJ m−2 UV-C (254 nm) caused similar changes. In contrast, seedlings irradiated with 5 kJ m−2 UV-B including only wavelengths longer than 290 nm (8% of UV-B between 290 and 300 nm; long-wavelength UV-B, LW-UVB) resulted only in a general increase in absorption (80% at 317 nm). The increases in absorption were detectable as early as 3 h after irradiation with FS-UVB and UV-C, while the response to LW-UVB was first detectable at 6 h after irradiation. In extracts from whole Arabidopsis seedlings, 5 kJ m−2 LW-UVB caused only a 20% increase in total absorption. Irradiation with 5 kJ m−2 FS-UVB caused the appearance of a new peak at 270 nm and a concomitant increase in absorption of 72%. The induction of this new peak was observed in seedlings carrying the fah 1 mutation which disrupts the pathway for sinapate synthesis. The results are in agreement with previously published data on stem elongation indicating the existence of two response pathways within the UV-B, one operating at longer wavelengths (>300 nm) and another specifically activated by short wavelength UV-B (<300 nm and also by UV-C).  相似文献   
933.
The concentration of dissolved oxygen (DO) is an important attribute of aquatic ecosystems, influencing habitat, drinking water quality, biodiversity, nutrient biogeochemistry, and greenhouse gas emissions. While average summer DO concentrations are declining in lakes across the temperate zone, much remains unknown about seasonal factors contributing to deepwater DO losses. It is unclear whether declines are related to increasing rates of seasonal DO depletion or changes in seasonal stratification that limit re-oxygenation of deep waters. Furthermore, despite the presence of important biological and ecological DO thresholds, there has been no large-scale assessment of changes in the amount of habitat crossing these thresholds, limiting the ability to understand the consequences of observed DO losses. We used a dataset from >400 widely distributed lakes to identify the drivers of DO losses and quantify the frequency and volume of lake water crossing biologically and ecologically important threshold concentrations ranging from 5 to 0.5 mg/L. Our results show that while there were no consistent changes over time in seasonal DO depletion rates, over three-quarters of lakes exhibited an increase in the duration of stratification, providing more time for seasonal deepwater DO depletion to occur. As a result, most lakes have experienced summertime increases in the amount of water below all examined thresholds in deepwater DO concentration, with increases in the proportion of the water column below thresholds ranging between 0.9% and 1.7% per decade. In the 30-day period preceding the end of stratification, increases were greater at >2.2% per decade and >70% of analyzed lakes experienced increases in the amount of oxygen-depleted water. These results indicate ongoing climate-induced increases in the duration of stratification have already contributed to reduction of habitat for many species, likely increased internal nutrient loading, and otherwise altered lake chemistry. Future warming is likely to exacerbate these trends.  相似文献   
934.
acta ethologica - Common across various taxa, infanticide is a highly variable phenomenon present from insects to birds to mammals. In felids, antagonistic sexual coevolution led to the development...  相似文献   
935.
A number of experimental studies have demonstrated that phytoplankton can display rapid thermal adaptation in response to warmed environments. While these studies provide insight into the evolutionary responses of single species, they tend to employ different experimental techniques. Consequently, our ability to compare the potential for thermal adaptation across different, ecologically relevant, species remains limited. Here, we address this limitation by conducting simultaneous long-term warming experiments with the same experimental design on clonal isolates of three phylogenetically diverse species of marine phytoplankton; the cyanobacterium Synechococcus sp., the prasinophyte Ostreococcus tauri and the diatom Phaeodoactylum tricornutum. Over the same experimental time period, we observed differing levels of thermal adaptation in response to stressful supra-optimal temperatures. Synechococcus sp. displayed the greatest improvement in fitness (i.e., growth rate) and thermal tolerance (i.e., temperature limits of growth). Ostreococcus tauri was able to improve fitness and thermal tolerance, but to a lesser extent. Finally, Phaeodoactylum tricornutum showed no signs of adaptation. These findings could help us understand how the structure of phytoplankton communities may change in response to warming, and possible biogeochemical implications, as some species show relatively more rapid adaptive shifts in their thermal tolerance.  相似文献   
936.
The oral–aboral axis of the sea urchin embryo is specified conditionally via a regulated feedback circuit involving the signaling gene nodal and its antagonist lefty. In normal development nodal activity becomes localized to the prospective oral side of the blastula stage embryo, a process that requires lefty. In embryos of Strongylocentrotus purpuratus, a redox gradient established by asymmetrically distributed mitochondria provides an initial spatial input that positions the localized domain of nodal expression. This expression is perturbed by hypoxia, leading to development of radialized embryos lacking an oral–aboral axis. Here we show that this radialization is not caused by a failure to express nodal, but rather by a failure to localize nodal activity to one side of the embryo. This occurs even when embryos are removed from hypoxia at late cleavage stage when nodal is first expressed, indicating that the effect involves the initiation phase of nodal activity, rather than its positive feedback-driven amplification and maintenance. Quantitative fluorescence microscopy of MitoTracker Orange-labeled embryos expressing nodal-GFP reporter gene revealed that hypoxia abolishes the spatial correlation between mitochondrial distribution and nodal expression, suggesting that hypoxia eliminates the initial spatial bias in nodal activity normally established by the redox gradient. We propose that absent this bias, the initiation phase of nodal expression is spatially uniform, such that the ensuing Nodal-mediated community effect is not localized, and hence refractory to Lefty-mediated enforcement of localization.  相似文献   
937.
ObjectiveTo investigate the pharmacokinetics of 17β-estradiol (E2) administered orally versus those of 17β-E2 administered sublingually in transgender women.MethodsSingle doses of 17β-E2 were administered orally (1 mg) to 10 transgender women and then sublingually (1 mg) after a 1-week washout period. Blood samples were collected at baseline (0 hour) and at 1, 2, 3, 4, 6, and 8 hours after dosing. The samples were frozen and analyzed using liquid chromatography mass spectrometry (LC-MS/MS) and immunoassay.ResultsThe results demonstrated that sublingual E2 had a significantly higher peak serum E2 concentration of 144 pg/mL, measured using LC-MS/MS, compared with an oral E2 concentration of 35 pg/mL, measured using LC-MS/MS (P = .003). Sublingual E2 peaked at 1 hour and oral E2 peaked at 8 hours, as measured using LC-MS/MS. The area under the curve (AUC) (0-8 hours) for sublingual E2, measured using LC-MS/MS, was 1.8-fold higher than the AUC (0-8 hours) for oral E2, measured using LC-MS/MS. Additionally, sublingual E2 was found to have an increased E2-to-estrone ratio at all time points (1.1 ± 1.0 vs 0.7 ± 0.4, P ≤ .0001), the clinical significance of which is unclear.ConclusionOral E2 administered sublingually has a different pharmacokinetic profile, with higher serum E2 levels and AUC (0-8 hours) than traditionally administered oral E2. Multidaily dosing may be necessary to suppress testosterone levels with sublingual E2. The appropriate dosing, efficacy, and safety of sublingual E2, compared with those of other E2 preparations, are unknown.  相似文献   
938.
Acidic human fibroblast growth factor (hFGF1) plays a key role in cell growth and proliferation. Activation of the cell surface FGF receptor is believed to involve the glycosaminoglycan, heparin. However, the exact role of heparin is a subject of considerable debate. In this context, in this study, the correlation between heparin binding affinity and cell proliferation activity of hFGF1 is examined by extending the heparin binding pocket through selective engineering via charge reversal mutations (D82R, D84R and D82R/D84R). Results of biophysical experiments such as intrinsic tryptophan fluorescence and far UV circular dichroism spectroscopy suggest that the gross native structure of hFGF1 is not significantly perturbed by the engineered mutations. However, results of limited trypsin digestion and ANS binding experiments show that the backbone structure of the D82R variant is more flexible than that of the wild type hFGF1. Results of the temperature and urea-induced equilibrium unfolding experiments suggest that the stability of the charge-reversal mutations increases in the presence of heparin. Isothermal titration calorimetry (ITC) data reveal that the heparin binding affinity is significantly increased when the charge on D82 is reversed but not when the negative charge is reversed at both positions D82 and D84 (D82R/D84R). However, despite the increased affinity of D82R for heparin, the cell proliferation activity of the D82R variant is observed to be reduced compared to the wild type hFGF1. The results of this study clearly demonstrate that heparin binding affinity of hFGF1 is not strongly correlated to its cell proliferation activity.  相似文献   
939.
TRPML3 is an inward rectifying Ca2+ channel that is regulated by extracytosolic H+. Although gain-of-function mutation in TRPML3 causes the varitint-waddler phenotype, the role of TRPML3 in cellular physiology is not known. In this study, we report that TRPML3 is a prominent regulator of endocytosis, membrane trafficking and autophagy. Gradient fractionation and confocal localization reveal that TRPML3 is expressed in the plasma membrane and multiple intracellular compartments. However, expression of TRPML3 is dynamic, with accumulation of TRPML3 in the plasma membrane upon inhibition of endocytosis, and recruitment of TRPML3 to autophagosomes upon induction of autophagy. Accordingly, overexpression of TRPML3 leads to reduced constitutive and regulated endocytosis, increased autophagy and marked exacerbation of autophagy evoked by various cell stressors with nearly complete recruitment of TRPML3 into the autophagosomes. Importantly, both knockdown of TRPML3 by siRNA and expression of the channel-dead dominant negative TRPML3(D458K) have a reciprocal effect, reducing endocytosis and autophagy. These findings reveal a prominent role for TRPML3 in regulating endocytosis, membrane trafficking and autophagy, perhaps by controlling the Ca2+ in the vicinity of cellular organelles that is necessary to regulate these cellular events.  相似文献   
940.
ABSTRACT

Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using ppargc1a?/- VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs. Abnormal autophagosomes were observed in VSMCs in aortas of ppargc1a?/- mice. ppargc1a?/- VSMCs in culture presented reductions in LC3-II levels; in autophagosome number; and in the expression of SQSTM1 (protein and mRNA), LAMP2 (lysosomal-associated membrane protein 2), CTSD (cathepsin D), and TFRC (transferrin receptor). Reduced SQSTM1 protein expression was also observed in aortas of ppargc1a?/- mice and was upregulated by PPARGC1A overexpression, suggesting that SQSTM1 is a direct target of PPARGC1A. Inhibition of autophagy by 3-MA (3 methyladenine), spautin-1 or Atg5 (autophagy related 5) siRNA stimulated senescence. Rapamycin rescued the effect of Atg5 siRNA in Ppargc1a+/+ , but not in ppargc1a?/- VSMCs, suggesting that other targets of MTOR (mechanistic target of rapamycin kinase), in addition to autophagy, also contribute to senescence. Sqstm1 siRNA increased senescence basally and in response to AGT II (angiotensin II) and zinc overload, two known inducers of senescence. Furthermore, Sqstm1 gene deficiency mimicked the phenotype of Ppargc1a depletion by presenting reduced autophagy and increased senescence in vitro and in vivo. Thus, PPARGC1A upregulates autophagy reducing senescence by a SQSTM1-dependent mechanism. We propose SQSTM1 as a novel target in therapeutic interventions reducing senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号