首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   19篇
  179篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   8篇
  2011年   6篇
  2010年   13篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1958年   5篇
  1957年   1篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1953年   4篇
  1952年   4篇
  1951年   2篇
  1949年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
141.
The effects of incorporating a hydrogel polymer into sand onthe development of selected horticultural plants grown undersaline conditions has been demonstrated. In separate experiments,the seeds of tomato (Lycopersicon esculentum Mill.), lettuce(Lactuca sativa L.) and cucumber (Cucumis sativus L.) were germinatedin sand/swollen hydrogel polymer mixture (25: 75, v: v) withadded Hoagland nutrient solution. At cotyledon + first trueleaf stage, the plantlets were transplanted into polythene growbagscontaining a range of sand/swollen hydrogel polymer combinations(0: 100, 25: 75, 50: 50, 75: 25 and 100: 0, v: v). Saline solutionscontaining NaCl, CaCl2 and MgCl2 were prepared as molar solutionsand applied at combined concentrations as follows; Control (Hoagland),2000, 4000, 8000, and 32 000 ppm. Application of the appropriatesolution to the growbags was made twice per week, alternatingwith a comparable watering regime. Harvesting was carried outafter 14 and 28 d. Polymer incorporation encouraged growth ofall species under all saline conditions, the order of effectivenessof the polymer contents being as follows; 75%>50% 25% 100%>0%.At high salinity (32 000 ppm) plants of the test species werereduced in growth but appeared to be tolerant at all levelsof polymer incorporation; in pure sand the level of tolerancein tomato and cucumber was <8000 ppm and in lettuce <4000 ppm. Generally, dry weight, leaf area, succulence, chloroplastpigments (chlorophyll a, chlorophyll b, and carotenoids), photosyntheticactivity, total amino acids, proline, and protein contents wereincreased with polymer incorporation compared with pure sand.This hydrogel polymer appears to be highly effective for useas a soil conditioner in horticulture, to improve crop toleranceand growth in a sand or light gravel substrate under salineconditions. It is intended to confirm the results of these studiesby field trials. Key words: Tomato (Lycopersicon esculentum Mill.), lettuce (Lactuca sativa L.), cucumber (Cucumis sativus L.), salinity, hydrogel, polymer, salt tolerance, growth, free amino acid, free proline, and protein  相似文献   
142.
143.
The potato cv. Igor is susceptible to infection with Potato virus Y (PVY) and in Slovenia it has been so severely affected with NTN isolates of PVY causing potato tuber necrotic ringspot disease (PTNRD) that its cultivation has ceased. Plants of cv. Igor were transformed with two transgenes that contained coat protein gene sequence of PVYNTN. Both transgenes used PVY sequence in a sense (+) orientation, one in native translational context (N‐CP), and one with a frame‐shift mutation (FS‐CP). Although most transgenic lines were susceptible to infection with PVYNTN and PVYO, several lines showed resistance that could be classified into two types. Following manual or graft inoculation, plants of partially resistant lines developed some symptoms in foliage and tubers, and virus titre in the foliage, estimated by ELISA, was low or undetectable. In highly resistant (R) lines, symptoms did not develop in foliage and on tubers, and virus could not be detected in foliage by ELISA or infectivity assay. Four lines from 34 tested (two N‐CP and two FS‐CP) were R to PVYNTN and PVYO and one additional line was R to PVYO. When cv. Spey was transformed with the same constructs, they did not confer strong resistance to PVYO.  相似文献   
144.
145.
Drought is one of the critical conditions for the growth and productivity of many crops including mung bean (Vigna radiata L. Wilczek). Screening of genotypes for variations is one of the suitable strategies for evaluating crop adaptability and global food security. In this context, the study investigated the physiological and biochemical responses of four drought tolerant (BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7), and four drought sensitive (BARI Mung-1, BARI Mung-3, BU Mung-4, BMX-05001) mung bean genotypes under wellwatered (WW) and water deficit (WD) conditions. The WW treatment maintained sufficient soil moisture (22% ± 0.5%, i.e., 30% deficit of available water) by regularly supplying water. Whereas, the WD treatment was maintained throughout the growing period, and water was applied when the wilting symptom appeared. The drought tolerant (DT) genotypes BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7 showed a high level of proline accumulation (2.52–5.99 mg g−1 FW), photosynthetic pigment (total chlorophyll 2.96–3.27 mg g−1 FW at flowering stage, and 1.62–2.38 mg g−1 FW at pod developing stage), plant water relation attributes including relative water content (RWC) (82%–84%), water retention capacity (WRC) (12–14) as well as lower water saturation deficit (WSD) (19%–23%), and water uptake capacity (WUC) (2.58–2.89) under WD condition, which provided consequently higher relative seed yield. These indicate that the tolerant genotypes gained better physiobiochemical attributes and adaptability in response to drought conditions. Furthermore, the genotype BMX- 08010-2 showed superiority in terms of those physio-biochemical traits, susceptibility index (SSI) and stress tolerance index (STI) to other genotypes. Based on the physiological and biochemical responses, the BMX-08010-2 was found to be a suitable genotype for sustaining yield under drought stress, and subsequently, it could be recommended for crop improvement through hybridization programs. In addition, the identified traits can be used as markers to identify tolerant genotypes for drought-prone areas.  相似文献   
146.
147.
148.
149.
Spatial genetic structure (SGS) results from the interplay of several demographical processes that are difficult to tease apart. In this study, we explore the specific effects of seed and pollen dispersal and of early postdispersal mortality on the SGS of a seedling cohort (N = 786) recruiting within and around an expanding pedunculate oak (Quercus robur) stand. Using data on dispersal (derived from parentage analysis) and mortality (monitored in the field through two growing seasons), we decompose the overall SGS of the cohort into its components by contrasting the SGS of dispersed (i.e. growing away from their mother tree) vs. nondispersed (i.e. growing beneath their mother tree) and initial vs. surviving seedlings. Patterns differ strongly between nondispersed and dispersed seedlings. Nondispersed seedlings are largely responsible for the positive kinship values observed at short distances in the studied population, whereas dispersed seedlings determine the overall SGS at distances beyond c. 30 m. The paternal alleles of nondispersed seedlings show weak yet significantly positive kinships up to c. 15 m, indicating some limitations in pollen flow that should further promote pedigree structures at short distances. Seedling mortality does not alter SGS, except for a slight increase in the nondispersed group. Field data reveal that mortality in this group is negatively density‐dependent, probably because of small‐scale variation in light conditions. Finally, we observe a remarkable similarity between the SGS of the dispersed seedlings and that of the adults, which probably reflects dispersal processes during the initial expansion of the population. Overall, this study demonstrates that incorporating individual‐level complementary information into analyses can greatly improve the detail and confidence of ecological inferences drawn from SGS.  相似文献   
150.
Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non‐random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6‐year period. Intensive live‐trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark–recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population‐level genetic diversity measures did not significantly vary in time and remained relatively high (HE range: 0.72–0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号