首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   26篇
  2023年   8篇
  2022年   28篇
  2021年   41篇
  2020年   26篇
  2019年   20篇
  2018年   40篇
  2017年   27篇
  2016年   40篇
  2015年   46篇
  2014年   61篇
  2013年   59篇
  2012年   70篇
  2011年   39篇
  2010年   26篇
  2009年   17篇
  2008年   23篇
  2007年   12篇
  2006年   16篇
  2005年   7篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
排序方式: 共有622条查询结果,搜索用时 15 毫秒
611.
Pseudomonas aeruginosa, a Gram‐negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein–chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N‐terminal domain. However, disordered and flexible residues located both at the N‐ and C‐terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a “disorder‐to‐order” transition of PopB protein might take place upon PcrH binding. The long helical coiled‐coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism. Proteins 2014; 82:3273–3285. © 2014 Wiley Periodicals, Inc.  相似文献   
612.
Molecular and Cellular Biochemistry - Recent literature suggested an important function of native amyloid precursor protein (APP) as amine oxidase implicating in protection of brain cells from...  相似文献   
613.
Mechanisms that couple protein turnover to cell cycle progression are critical for coordinating the events of cell duplication and division. Despite the importance of cell cycle-regulated proteolysis, however, technologies to measure this phenomenon are limited, and typically involve monitoring cells that are released back into the cell cycle after synchronization. We describe here the use of laser scanning cytometry (LSC), a technical merger between fluorescence microscopy and flow cytometry, to determine cell cycle-dependent changes in protein stability in unperturbed, asynchronous, cultures of mammalian cells. In this method, the ability of the LSC to accurately measure whole cell fluorescence is employed, together with RNA fluorescence in situ hybridization and immunofluorescence, to relate abundance of a particular RNA and protein in a cell to its point at the cell cycle. Parallel monitoring of RNA and protein levels is used, together with protein synthesis inhibitors, to reveal cell cycle-specific changes in protein turnover. We demonstrate the viability of this method by analyzing the proteolysis of two prominent human oncoproteins, Myc and Cyclin E, and argue that this LSC-based approach offers several practical advantages over traditional cell synchronization methods.  相似文献   
614.
The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1–2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020–2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil–plant–atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.  相似文献   
615.
The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.  相似文献   
616.
Protein aggregation is a multi-step process that requires sequential structural transitions of monomers during their incorporation into oligomers. Such process involves the formation of various intermediate stages in protein structures. Seed-nucleation mediated oligomerization is observed in many aggregation-prone proteins. Understanding of the protein seed's structural features and mechanisms of its transition-state formation are important for knowing the details of post-nucleation aggregation process. We have identified the metastable states in the seeds of the Ubiquitin associated (UBA) domain of Huntingtin Interacting Protein K (HYPK). This is studied by monitoring the events of dynamic transitions of metastable seeds to aggregates or monomers through microscopy, biophysical and computational techniques. HYPK-UBA seeds can exist in specific metastable state(s) that show transition from closed to open conformations, thereby reorienting the helix associated hydrophobic patches to cause its self-aggregation. Metastable seeds show inter-seed exchange of monomers through simultaneous dissociation-association phenomenon. Monomer release from metastable seeds can cause the dissolution of the aggregates. Like metastable monomers, metastable seeds also show reduction in their secondary structure by altering the molecular contacts and solvent accessible hydrophobic surfaces. Induction of metastable seeds from the ground-state is a slow thermodynamic process and it results from excitable perturbations. Conclusively, we propose the concept that the thermodynamic induction of metastable states in HYPK-UBA seed potentiates the molecule to switch its conformations that increases the protein's self-aggregation by the mechanism of hydrophobic patch collapse, while also releasing the monomers from oligomeric seeds due to structural instability.  相似文献   
617.
Coexistent Brugada syndrome and Wolff-Parkinson-White (WPW) syndrome is rare, and as such poses management challenges. The overlap of symptoms attributable to each condition, the timing of ventricular stimulation after accessory pathway ablation and the predictive value of programmed stimulation in Brugada syndrome are controversial. We describe a case of coexistent Brugada syndrome and WPW syndrome in a symptomatic young adult. We discuss our treatment approach and the existing literature along with the challenges in management of such cases.  相似文献   
618.
Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms.  相似文献   
619.
620.
A theoretical exploration of the possible active site models of methanofuran dehydrogenase reveals that the free energy of the reduction of the carbamate group is substantially negative and is driven by the electron withdrawing amide group next to the carbonyl carbon. Comparison of the computed transition state energies with the experimental energy barrier indicates that the active site is likely to have an axial oxo and equatorial hydrosulfide ligand, the substrate is likely to be protonated and a second-sphere hydrogen-bonding interaction with the axial ligand can, substantially, lower the barrier of this reaction which involves reduction of the carbonyl center of the a carbamate to form an N-formyl group via a hydride shift from a Mo(IV) center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号