首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   29篇
  2023年   8篇
  2022年   25篇
  2021年   42篇
  2020年   26篇
  2019年   21篇
  2018年   40篇
  2017年   27篇
  2016年   41篇
  2015年   47篇
  2014年   61篇
  2013年   64篇
  2012年   72篇
  2011年   40篇
  2010年   28篇
  2009年   17篇
  2008年   29篇
  2007年   15篇
  2006年   20篇
  2005年   15篇
  2004年   12篇
  2003年   13篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   5篇
  1963年   1篇
  1955年   1篇
排序方式: 共有733条查询结果,搜索用时 250 毫秒
91.
92.
The advent of Multi Drug Resistant (MDR) strain of Mycobacterium tuberculosis (TB) necessitated search for new drug targets for the bacterium. It is reported that 3.3% of all new tuberculosis cases had multidrug resistance (MDR-TB) in 2009 and each year, about 0.44 million MDR-TB cases are estimated to emerge and 0.15 million people with MDR-TB die. Keeping such an alarming situation under consideration we wanted to design suitable anti tubercular molecules for new target using computational tools. In the work Methionine aminopeptidase (MetAP) of Mycobacterium tuberculosis was considered as target and three non-toxic phenolic=ketonic compounds were considered as ligands. Docking was done with Flex X and AutoDock 4.2 separately. Ten proven inhibitors of MetAP were collected from literature with their IC50 and were correlated using EasyQSAR to generate QSAR model. Activity of ligands in question was predicted from QSAR. Pharmacophore for each docking was generated using Ligandscout 3.0. Toxicity of the ligands in question was predicted on Mobyle@rpbs portal and Actelion property explorer. Molecular docking with target showed that of all three ligands, 3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1, 1-bis (olate) has highest affinity (- 37.5096) and lowest IC50 (4.46 µM). We therefore, propose that -3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1,1- bis(olate) as a potent MetAP inhibitor may be a new anti-tubercular drug particularly in the context of Multi Drug Resistant Tuberculosis (MDR-TB).  相似文献   
93.
Visual perception of the environment is mediated by specialized photoreceptor (PR) neurons of the eye. Each PR expresses photosensitive opsins, which are activated by a particular wavelength of light. In most insects, the visual system comprises a pair of compound eyes that are mainly associated with motion, color or polarized light detection, and a triplet of ocelli that are thought to be critical during flight to detect horizon and movements. It is widely believed that the evolutionary diversification of compound eye and ocelli in insects occurred from an ancestral visual organ around 500 million years ago. Concurrently, opsin genes were also duplicated to provide distinct spectral sensitivities to different PRs of compound eye and ocelli. In the fruit fly Drosophila melanogaster, Rhodopsin1 (Rh1) and Rh2 are closely related opsins that originated from the duplication of a single ancestral gene. However, in the visual organs, Rh2 is uniquely expressed in ocelli whereas Rh1 is uniquely expressed in outer PRs of the compound eye. It is currently unknown how this differential expression of Rh1 and Rh2 in the two visual organs is controlled to provide unique spectral sensitivities to ocelli and compound eyes. Here, we show that Homothorax (Hth) is expressed in ocelli and confers proper rhodopsin expression. We find that Hth controls a binary Rhodopsin switch in ocelli to promote Rh2 expression and repress Rh1 expression. Genetic and molecular analysis of rh1 and rh2 supports that Hth acts through their promoters to regulate Rhodopsin expression in the ocelli. Finally, we also show that when ectopically expressed in the retina, hth is sufficient to induce Rh2 expression only at the outer PRs in a cell autonomous manner. We therefore propose that the diversification of rhodpsins in the ocelli and retinal outer PRs occurred by duplication of an ancestral gene, which is under the control of Homothorax.  相似文献   
94.
BackgroundVisceral leishmaniasis (VL) is a multifactorial disease, where the host genetics play a significant role in determining the disease outcome. The immunological role of anti-inflammatory cytokine, Interleukin 10 (IL10), has been well-documented in parasite infections and considered as a key regulatory cytokine for VL. Although VL patients in India display high level of IL10 in blood serum, no genetic study has been conducted to assess the VL susceptibility / resistance. Therefore, the aim of this study is to investigate the role of IL10 variations in Indian VL; and to estimate the distribution of disease associated allele in diverse Indian populations.MethodologyAll the exons and exon-intron boundaries of IL10 were sequenced in 184 VL patients along with 172 ethnically matched controls from VL endemic region of India.

Result and Discussion

Our analysis revealed four variations; rs1518111 (2195 A>G, intron), rs1554286 (2607 C>T, intron), rs3024496 (4976 T>C, 3’ UTR) and rs3024498 (5311 A>G, 3’ UTR). Of these, a variant g.5311A is significantly associated with VL (χ2=18.87; p =0.00001). In silico approaches have shown that a putative micro RNA binding site (miR-4321) is lost in rs3024498 mRNA. Further, analysis of the above four variations in 1138 individuals from 34 ethnic populations, representing different social and linguistic groups who are inhabited in different geographical regions of India, showed variable frequency. Interestingly, we have found, majority of the tribal populations have low frequency of VL (‘A’ of rs3024498); and high frequency of leprosy (‘T’ of rs1554286), and Behcet’s (‘A’ of rs1518111) associated alleles, whereas these were vice versa in castes. Our findings suggest that majority of tribal populations of India carry the protected / less severe allele against VL, while risk / more severe allele for leprosy and Behcet’s disease. This study has potential implications in counseling and management of VL and other infectious diseases.  相似文献   
95.
Diabetes mellitus is a multifactorial metabolic disease characterized by post-prandial hyperglycemia (PPHG). α-amylase and α-glucosidase inhibitors aim to explore novel therapeutic agents. Herein we report the promises of Dioscorea bulbifera and its bioactive principle, diosgenin as novel α-amylase and α-glucosidase inhibitor. Among petroleum ether, ethyl acetate, methanol and 70% ethanol (v/v) extracts of bulbs of D. bulbifera, ethyl acetate extract showed highest inhibition upto 72.06 ± 0.51% and 82.64 ± 2.32% against α-amylase and α-glucosidase respectively. GC-TOF-MS analysis of ethyl acetate extract indicated presence of high diosgenin content. Diosgenin was isolated and identified by FTIR, 1H NMR and 13C NMR and confirmed by HPLC which showed an α-amylase and α-glucosidase inhibition upto 70.94 ± 1.24% and 81.71 ± 3.39%, respectively. Kinetic studies confirmed the uncompetitive mode of binding of diosgenin to α-amylase indicated by lowering of both Km and Vm. Interaction studies revealed the quenching of intrinsic fluorescence of α-amylase in presence of diosgenin. Similarly, circular dichroism spectrometry showed diminished negative humped peaks at 208 nm and 222 nm. Molecular docking indicated hydrogen bonding between carboxyl group of Asp300, while hydrophobic interactions between Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues of α-amylase. Diosgenin interacted with two catalytic residues (Asp352 and Glu411) from α-glucosidase. This is the first report of its kind that provides an intense scientific rationale for use of diosgenin as novel drug candidate for type II diabetes mellitus.  相似文献   
96.
The state-of-art research in the field of life’s organization confronts the need to investigate a number of interacting components, their properties and conditions of sustainable behaviour within a natural system. In biology, ecology and life sciences, the performance of such stable system is usually related to homeostasis, a property of the system to actively regulate its state within a certain allowable limits. In our previous work, we proposed a deterministic model for systems’ homeostasis. The model was based on dynamical system’s theory and pairwise relationships of competition, amensalism and antagonism taken from theoretical biology and ecology. However, the present paper proposes a different dimension to our previous results based on the same model. In this paper, we introduce the influence of inter-component relationships in a system, wherein the impact is characterized by direction (neutral, positive, or negative) as well as its (absolute) value, or strength. This makes the model stochastic which, in our opinion, is more consistent with real-world elements affected by various random factors. The case study includes two examples from areas of hydrobiology and medicine. The models acquired for these cases enabled us to propose a convincing explanation for corresponding phenomena identified by different types of natural systems.  相似文献   
97.
The development of biofriendly and economical alternatives to chemical pesticides is a globally important scientific challenge. In this work, Karanja-based media conditions were optimized for obtaining high production of biomass and spores of a biocontrol agent, the entomopathogenic fungus Paecilomyces lilacinus 6029, using a two-step statistical approach coupled with rigorous experimentation. In the first step, non-edible Karanja cake was screened out as a major substrate from other oil cakes. In the second step, biomass production was maximized by applying response surface methodology to experimental variations in key physico-chemical factors: carbon/nitrogen (C/N) ratio and pH. This approach eventually predicted a maximum biomass production of 10.559 g/l with a medium having a C/N ratio of 35.88 and pH 5.9. An experimental production of 10.529 g/l biomass was obtained. The remarkable agreement between the predicted and the experimentally obtained biomass confirm the validity of the approach utilized to maximize production of P. lilacinus.  相似文献   
98.
Differentiation of neural stem cells (NSC’s) to mature and functional neurons requires coordinated expression of mRNA, microRNAs (miRNAs) and regulatory proteins. Our earlier unbiased miRNA profiling studies have identified miR-200, miR-34 and miR-221/222 as maximally up-regulated miRNA families in differentiating PC12 cells and demonstrated the capability of miR-200 family in inducing neuronal differentiation (J. Neurochem, 2015, 133, 640–652). In present study, we have investigated role of miR-34 family in neuronal differentiation and identified P53 as mediator of nerve growth factor (NGF) induced miR-34a expression in differentiating PC12 cells. Our studies have shown that NGF induced miR-34a, arrests proliferating PC12 cells to G1 phase, which is pre-requisite for neuronal differentiation. Our studies have also shown that increased expression of miR-34a controls the P53 level in differentiated PC12 cells in feedback inhibition manner, which probably prevents differentiated cells from P53 induced apoptosis. Expression profiling of miR-34 family in different neuronal, non-neuronal and developing cells have identified differentiated and aged brain cells as richest source of miR-34, which also indicates that higher expression of miR-34 family helps in maintaining the mature neurons in non-proliferative stage. In conclusion, our studies have shown that miR-34 is brain enriched miRNA family, which up-regulates with neuronal maturation and brain ageing and co-operative regulation of P53 and miR-34a helps in neuronal differentiation by arresting cells in G1 phase.  相似文献   
99.
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax‐like protein (ATX), Su (var)3‐9 h omologs protein (SUVH), Su(var)3‐9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S‐adenosylmethionine (SAM) binding pocket and a post‐SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein‐protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre‐SET and post‐SET domains in HKMTs of the aforementioned plant species lead to variations in class‐specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号