首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   29篇
  2023年   8篇
  2022年   25篇
  2021年   42篇
  2020年   26篇
  2019年   21篇
  2018年   40篇
  2017年   27篇
  2016年   41篇
  2015年   47篇
  2014年   61篇
  2013年   64篇
  2012年   72篇
  2011年   40篇
  2010年   28篇
  2009年   17篇
  2008年   29篇
  2007年   15篇
  2006年   20篇
  2005年   15篇
  2004年   12篇
  2003年   13篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   5篇
  1963年   1篇
  1955年   1篇
排序方式: 共有733条查询结果,搜索用时 907 毫秒
151.
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.  相似文献   
152.
Grove et al. have demonstrated L-type Ca2+ channel activity of a synthetic channel peptide (SCP) composed of four helices (sequence: DPWNVFDFLI10VIGSIIDVIL20SE) tethered by their C-termini to a nanopeptide template. We sought to obtain the optimal conformations of SCP and locate the binding sites for Ca2+ and for the dihydropyridine ligand nifedipine. Eight Ca2+ ions were added to neutralize the 16 acidic residues in the helices. Eight patterns of the salt bridges between Ca2+ ions and pairs of the acidic residues were calculated by the Monte Carlo-with-energy-minimization (MCM) protocol. In the energetically optimal conformation, two Ca2+ ions were bound to Asp-1 residues at the intracellular side of SCP, and six Ca2+ ions were arrayed in two files at the diametrically opposite sides of the pore, implying a Ca2+ relay mechanism. Nine modes of nifedipine binding to SCP were simulated by the MCM calculations. In the energetically optimal mode, the ligand fits snugly in the pore. The complex is stabilized by Ca2+ bound between two Asp-17 residues and hydrophilic groups of the ligand. The latter substitute water molecules adjacent to Ca2+ in the ligand-free pore and thus do not obstruct Ca2+ relay. The ligand-binding site is proximal to a hydrophobic bracelet of Ile-10 residues whose rotation is sterically hindered. In some conformations, the bracelet is narrow enough to block the permeation of the hydrated Ca2+ ions. The bracelet may thus act as a "gate" in SCP. Nifedipine and (R)-Bay K 8644, which act as blockers of the SCP, extend a side-chain hydrophobic moiety toward the Ile-10 residues. This would stabilize the pore-closing conformation of the gate. In contrast, the channel activator (S)-Bay K 8644 exposes a hydrophilic moiety toward the Ile-10 residues, thus destabilizing the pore-closing conformation of the gate.  相似文献   
153.
The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218–220°C and CA at 230–232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ~threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.  相似文献   
154.
155.
Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.  相似文献   
156.
Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway.Neutrophils are the most abundant terminally differentiated white blood cells. Although in a normal healthy human, 1–2 × 1011 neutrophils are produced daily but hardly a few survive for more than 10 h in circulation.1, 2 Neutrophil phagocytose invading pathogens and kill them by producing reactive oxygen intermediates and/or by proteolytic enzymes. Besides pathogen clearance, neutrophils are also detrimental in a number of inflammatory diseases.3 Spontaneous apoptosis is thus crucial for neutrophil homeostasis and resolution of inflammation. Neutrophil apoptosis is controlled by apoptotic and survival pathways, which are modulated by pro- and anti-inflammatory cytokines, caspases and calpains. Moreover, a critical balance between reactive oxygen species (ROS) and anti-oxidants is required for cell survival. In neutrophils, ROS is largely produced by the enzyme NADPH oxidase (NOX) which adversely affects their survival.4, 5, 6 Yan et al.7 have recently demonstrated that NOX4 derived ROS following TGF-β stimulation induced apoptosis in endothelial cells.Nitric oxide (NO), a gaseous signalling molecule synthesized by NO synthase (NOS) from l-arginine, regulates several cellular functions such as vasodilation, migration, proliferation, differentiation and apoptosis. Cell death is induced following enhanced levels of NO from inducible nitric oxide synthase (iNOS) during inflammation, ischaemia/reperfusion or by NO donors such as DETA-NO, sodium nitroprusside and S-nitroso-N-acetyl-penicillamine.8, 9, 10 Our previous work has demonstrated a dose-dependent pro- and anti-apoptotic effect of NO on promyelocytic cell line HL-60.11 Two isoforms of NOS-iNOS and nNOS are constitutively expressed in human and mice PMNs12 but their regulation and interplay in neutrophil apoptosis is still enigmatic.Caspases having a crucial role in the modulation of apoptosis and apoptotic pathways have two components; caspase-8, an initiator caspase13 which mediates Fas induced death pathway, and caspase-9, which is vital for the mitochondrial mediated death. Opening of the mitochondrial membrane transition pore leads to cytochrome c release into the cytosol-forming apoptosis protease activating factor-1 (Apaf-1), a multimeric complex known as apoptosome which then activate pro-caspase-9. On the other hand, caspase-8 cleaves BID to tBID which translocate to mitochondria and release cytochrome c.5 Caspase-3, the effector caspase, is important for both extrinsic and intrinsic pathway with well documented role in the regulation of neutrophil apoptosis.14 It was shown that the anti-apoptotic effect of NO was related to the inhibition of caspase-3 activation through cGMP-dependent and independent mechanisms.15 S-glutathionylation is a redox-based regulatory mechanism which regulates caspase cleavage and its activation. Caspase-3 undergoes glutathionylation at Cys (163, 184 and 220) which prevents its cleavage and activation.16 In endothelial cells, TNF-α induced caspase-3 cleavage and apoptosis are regulated by caspase-3 glutathionylation/deglutathionylation cycles.17The present study demonstrates the crucial role of NO/iNOS in neutrophil survival. NO-induced ROS generation in human PMNs and mice bone marrow derived neutrophils (BMDN) led to caspase-8 cleavage, activation of BID and initiation of the mitochondrial death pathway. Augmented ROS production and apoptosis in NO pre-treated cells were attenuated in neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice BMDN or VAS-2870 treated human PMNs suggesting role of NOX in NO mediated initiation of apoptosis. NO-induced deglutathionylation of caspase-3 and -8 suggest redox mediated modulation of neutrophil apoptosis. Moreover, spontaneous apoptosis of BMDN was reduced in iNOS KO mice, iNOS silenced or iNOS inhibitor treated human PMNs, implying the importance of iNOS in neutrophil apoptosis. Altogether, these findings demonstrate the role of caspase-3, -8 and -9 in NO/iNOS induced neutrophil apoptosis.  相似文献   
157.
The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis.  相似文献   
158.
159.
The host–guest technique has been applied to the determination of the helix–coil stability constants of two naturally occurring amino acids, L -alanine and L -leucine, in a nonaqueous solvent system. Random copolymers containing L -alanine and L -leucine, respectively, as guest residues and γ-benzyl-L -glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix–coil transition behavior in a dichloroacetic acid (DCA)–1,2-dichloroethane (DCE) mixture. Two types of helix–coil transitions were carried out on the copolymers: solvent-induced transitions in DCA–DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA–DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, σ and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L -alanine residue stabilizes the α-helical conformation more than the L -leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.  相似文献   
160.
The molecular parameters of pronase-treated acid-soluble bovine skin collagen (P-ASC) were determined from low-shear gradient viscosity, electric birefringence, and electron microscopic data in order to determine the shear gradient range in which viscosity studies yield data which can be correctly interpreted by use of the various hydrodynamic equations for prolate ellipsoids of revolution. The P-ASC solutions could be characterized by a single relaxation process in electric briefringence with rotary diffusion coefficient θ of 810 sec?1 and a corresponding molecular length of 2850 Å. Viscosity data were found to be shear gradient dependent and only the extrapolated zero-shear value [η]D = 0 could be used with the viscosity hydrodynamic equations to provide a correct value of molecular length. Intrinsic viscosities obtained at shear gradients >250 sec?1 are nearly 30% lower than the zero-shear value. Untreated acid-soluble collagen (ASC) solutions contain aggregates and these appear, from electric birefringence data, to be of endlinked character. ASC solutions show a much more marked shear gradient dependence than P-ASC. For example, at D~500sec?1,[η] = 22 dl/g, whereas the extrapolated zero-shear value of[η] was found to be 44 dl/g. Thus, the shear gradient dependence of native collagen solutions is much more marked than previously assumed and, in contrast to the usual practice, only viscosities measured near zero shear can be interpreted in terms of molecular parameters for collagen solutions containing aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号