首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   30篇
  332篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   12篇
  2016年   16篇
  2015年   26篇
  2014年   23篇
  2013年   26篇
  2012年   41篇
  2011年   27篇
  2010年   12篇
  2009年   11篇
  2008年   12篇
  2007年   21篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
111.
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases.  相似文献   
112.
Various nonglycosylated analogs were designed in order to explore the role of glycosylation in formaecin I, an antibacterial glycopeptide of insect origin. The functional behavior of a designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I was found to be similar to that of native glycosylated peptide. Both the peptides showed similar antibacterial activities against Escherichia coli and Salmonella strains. The designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I has low binding affinity to LPS identical to that of native glycopeptide, formaecin I. Both the peptides have similar killing kinetics and are nontoxic to erythrocytes. Formaecin I and designed nonglycosylated (P(7),endo P(8a),DeltaT(11))formaecin I have no definite conformational features associated with them. The glycosylated residue of threonine in formaecin I and proline residues in designed peptide [(P(7),endo P(8a),DeltaT(11))formaecin I], possibly help in stabilizing the correct conformation that facilitates presentation of the peptide to its receptor. It is evident that a functionally equivalent nonglycosylated analog of native glycosylated antibacterial peptide can be designed by strategically modifying the sequence.  相似文献   
113.
In this exploratory study, we investigated total erythrocyte carbonic anhydrase (CA) estrase activity as well as CA I isozyme concentration in patients with diabetes mellitus type II (DM) and healthy individuals of Howard University Hospital community. Total estrase activity of CA was measured spectrophotometrically using p-nitrophenol acetate before and after inhibition with acetazolamide. CA I isozyme was measured by radial immunodiffusion using monoclonal antibody (CA I) in agarose plates. The study involved 20 consented participants; 10 normal (N) and 10 (DM), 21 to 84 years of age. The study was approved by the Howard University Institution Review Board. The CA activity was measured following lysis of cells as U/min/mL and CA I concentration as mg/l. We observed CA activity as 46.3±4(N) and 25±2.1 (DM) whereas CA I concentration as 1896±125 (N) and 1104 ±63 (DM). We speculate that the change in the CA activity may of fundamental importance in the regulation of intracellular; pHi for the basic control of metabolism in diabetes mellitus. Further, we propose that CA activity is a good candidate for a biomarker of diabetes mellitus for the early detection of insulin resistance because the CA activity variation was proportional to the severity of the diabetes. Jehan Ornasir—these studies were undertaken as a partial requirement of her M.S. Degree, Graduate School, Howard University, Washington, DC, USA  相似文献   
114.
Nath A  Atkins WM  Sligar SG 《Biochemistry》2007,46(8):2059-2069
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.  相似文献   
115.
Journal of Plant Growth Regulation - Many agricultural soils fail to supply sufficient boron (B) and phosphorus (P) to growing plants due to their adsorption, precipitation and fixation phenomena....  相似文献   
116.
Pyrazinamide is an essential first-line antitubercular drug which plays pivotal role in tuberculosis treatment. It is a prodrug that requires amide hydrolysis by mycobacterial pyrazinamidase enzyme for conversion into pyrazinoic acid (POA). POA is known to target ribosomal protein S1 (RpsA), aspartate decarboxylase (PanD), and some other mycobacterial proteins. Spontaneous chromosomal mutations in RpsA have been reported for phenotypic resistance against pyrazinamide. We have constructed and validated 3D models of the native and Δ438A mutant form of RpsA protein. RpsA protein variants were then docked to POA and long range molecular dynamics simulations were carried out. Per residue binding free-energy calculations, free-energy landscape analysis, and essential dynamics analysis were performed to outline the mechanism underlying the high-level PZA resistance conferred by the most frequently occurring deletion mutant of RpsA. Our study revealed the conformational modulation of POA binding site due to the disruptive collective modes of motions and increased conformational flexibility in the mutant than the native form. Residue wise MMPBSA decomposition and protein-drug interaction pattern revealed the difference of energetically favorable binding site in the wild-type (WT) protein in comparison with the mutant. Analysis of size and shape of minimal energy landscape area delineated higher stability of the WT complex than the mutant form. Our study provides mechanistic insights into pyrazinamide resistance in Δ438A RpsA mutant, and the results arising out of this study will pave way for design of novel and effective inhibitors targeting the resistant strains of Mycobacterium tuberculosis.  相似文献   
117.
Estrogen receptor alpha (ERα) expression is critical for breast cancer classification, high ERα expression being associated with better prognosis. ERα levels strongly correlate with that of GATA binding protein 3 (GATA3), a major regulator of ERα expression. However, the mechanistic details of ERα–GATA3 regulation remain incompletely understood. Here we combine mathematical modeling with perturbation experiments to unravel the nature of regulatory connections in the ERα–GATA3 network. Through cell population-average, single-cell and single-nucleus measurements, we show that the cross-regulation between ERα and GATA3 amounts to overall negative feedback. Further, mathematical modeling reveals that GATA3 positively regulates its own expression and that ERα autoregulation is most likely absent. Lastly, we show that the two cross-regulatory connections in the ERα–GATA3 negative feedback network decrease the noise in ERα or GATA3 expression. This may ensure robust cell fate maintenance in the face of intracellular and environmental fluctuations, contributing to tissue homeostasis in normal conditions, but also to the maintenance of pathogenic states during cancer progression.  相似文献   
118.
We present a new method for rapid NMR data acquisition and assignments applicable to unlabeled (12C) or 13C-labeled biomolecules/organic molecules in general and metabolomics in particular. The method involves the acquisition of three two dimensional (2D) NMR spectra simultaneously using a dual receiver system. The three spectra, namely: (1) G-matrix Fourier transform (GFT) (3,2)D [13C, 1H] HSQC–TOCSY, (2) 2D 1H–1H TOCSY and (3) 2D 13C–1H HETCOR are acquired in a single experiment and provide mutually complementary information to completely assign individual metabolites in a mixture. The GFT (3,2)D [13C, 1H] HSQC–TOCSY provides 3D correlations in a reduced dimensionality manner facilitating high resolution and unambiguous assignments. The experiments were applied for complete 1H and 13C assignments of a mixture of 21 unlabeled metabolites corresponding to a medium used in assisted reproductive technology. Taken together, the experiments provide time gain of order of magnitudes compared to the conventional data acquisition methods and can be combined with other fast NMR techniques such as non-uniform sampling and covariance spectroscopy. This provides new avenues for using multiple receivers and projection NMR techniques for high-throughput approaches in metabolomics.  相似文献   
119.
Zona pellucida (ZP) is a glycoproteinaceous translucent matrix that surrounds the mammalian oocyte and plays a critical role in the accomplishment of fertilization. In humans, it is composed of 4 glycoproteins designated as ZP1, ZP2, ZP3 and ZP4, whereas mouse ZP is composed of ZP1, ZP2 and ZP3 (Zp4 being a pseudogene). In addition to a variable sequence identity of a given zona protein among various species, human ZP1 and ZP4 are paralogs and mature polypeptide chains share an identity of 47%. Employing either affinity purified native or recombinant human zona proteins, it has been demonstrated that ZP1, ZP3 and ZP4 bind to the capacitated human spermatozoa and induce an acrosome reaction, whereas in mice, ZP3 acts as the putative primary sperm receptor. Human ZP2 only binds to acrosome-reacted spermatozoa and thus may be acting as a secondary sperm receptor. In contrast to O-linked glycans of ZP3 in mice, N-linked glycans of human ZP3 and ZP4 are more relevant for induction of the acrosome reaction. Recent studies suggest that Sialyl-Lewisx sequence present on both N- and O-glycans of human ZP play an important role in human sperm?Cegg binding. There are subtle differences in the downstream signaling events associated with ZP3 versus ZP1/ZP4-mediated induction of the acrosome reaction. For example, ZP3 but not ZP1/ZP4-mediated induction of the acrosome reaction is dependent on the activation of the Gi protein-coupled receptor. Thus, various studies suggest that, in contrast to mice, in humans more than one zona protein binds to spermatozoa and induces an acrosome reaction.  相似文献   
120.
Cinobufotalin (CB), one of the bufadienolides prepared from toad venom, was investigated for its cytotoxicity, and the underneath mechanism involved. We primarily utilized DNA fragmentation assay and microscopic observation to assess the effect of various doses of CB in human lymphoma U937 cells. Following that, we investigated other parameters involved in cell death mechanism such as reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptotic proteins activation. HeLa cells were concomitantly used to generalize the data observed. Our results show that CB caused significant DNA fragmentation, decrease of MMP, and an increase in the intracellular Ca(2+) ion and ROS production. In addition, CB induced upregulation of Fas protein, proteolytic activation of cytochrome c, caspase-2, -3, -8 and -9 together with the activation of Bid and Bax. Our findings were further validated using either Fas/FasL antagonist or pan-caspase inhibitor to significantly inhibit CB-induced DNA fragmentation. In our study, we suggest that CB induces caspase dependent cell death in U937 cells, and that Fas plays a role in CB-induced apoptosis. Altogether, our data provides novel insights of the mechanism of action of CB and its potential as a future chemotherapeutic agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号