首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  55篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
31.
NSD3s, the proline-tryptophan-tryptophan-proline (PWWP) domain-containing, short isoform of the human oncoprotein NSD3, displays high transforming properties. Overexpression of human NSD3s or the yeast protein Pdp3 in Saccharomyces cerevisiae induces similar metabolic changes, including increased growth rate and sensitivity to oxidative stress, accompanied by decreased oxygen consumption. Here, we set out to elucidate the biochemical pathways leading to the observed metabolic phenotype by analyzing the alterations in yeast metabolome in response to NSD3s or Pdp3 overexpression using 1H nuclear magnetic resonance (NMR) metabolomics. We observed an increase in aspartate and alanine, together with a decrease in arginine levels, on overexpression of NSD3s or Pdp3, suggesting an increase in the rate of glutaminolysis. In addition, certain metabolites, including glutamate, valine, and phosphocholine were either NSD3s or Pdp3 specific, indicating that additional metabolic pathways are adapted in a protein-dependent manner. The observation that certain metabolic pathways are differentially regulated by NSD3s and Pdp3 suggests that, despite the structural similarity between their PWWP domains, the two proteins act by unique mechanisms and may recruit different downstream signaling complexes. This study establishes for the first time a functional link between the human oncoprotein NSD3s and cancer metabolic reprogramming.  相似文献   
32.
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a. This cyclic peptide was derived from a TAR-binding loop that emerged during lab evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to submicromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by tenfold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.  相似文献   
33.
It is of interest to compare the hematological profile (using Complete blood count) of COVID patients admitted in ICU, private ward, and isolation ward with varying severity. This data will help predict the severity of infection at peripheries and rural areas.  Detailed history and CBC was performed for all the cases. Different ratios and indexes such as systemic inflammatory index (SII), Neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR) were assessed. A total of 862 cases with a mean age of 49.9 ±17.4 years were enrolled. Hemoglobin level, lymphocyte (count per liter and percentage) were significantly lower in patients admitted in ICU as compared to patients admitted in the isolation ward and private ward (p <0.05). However, TLC, neutrophils, platelet count were higher in patients admitted to ICU (p <0.05). The Various ratios such as SII, NLR, and PLR showed significantly higher value in cases admitted in ICU (p <0.05). The TLC, neutrophil count, neutrophil percentage, SII, NLR, and PLR were significant predictors of severe disease (admission in ICU) with high diagnostic accuracy. We show that complete blood count method is a simple, readily available, rapid, and inexpensive tool that can be utilized for diagnosis and can predicting the severity of COVID 19 where RTPCR or trained staff is not available. Thus, NLR (%), SII, PLR, and TLC can predict severe illness with high accuracy.  相似文献   
34.
35.
Vancomycin-resistant enterococci (VRE) poses a formidable challenge to public health due to its inherent resistance to multiple antibiotics coupled with the ability to transfer genetic determinants to dangerous pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to investigate the incidence of vancomycin resistance in enterococci among clinical isolates at a tertiary care military hospital in the eastern region of Saudi Arabia and to detect van genes using multiplex-PCR. Overall, 246 isolates of enterococci were collected from various clinical specimens. The isolates were identified, and antimicrobial susceptibility testing was done using the Vitek 2 system. Multiplex PCR was performed on the VRE isolates, thus identified to determine the van genes harbored. A total of 15 VRE were identified, of which 14 (93.3%) were Enterococcus faecium, and 1(6.7%) was Enterococcus casseliflavus with intrinsic vanC resistance. Of the 14 vancomycin-resistant Enterococcus faecium, 8 (57.1%) harbored vanB genes, while 6 (42.8%) harbored vanA genes. All the VRE were susceptible to linezolid and tigecycline. Our study detected a low prevalence (6.1%) of VRE among clinical isolates of enterococci and that the vanB gene predominates in such strains. Susceptibility profiles indicated that linezolid and tigecycline are still effective against these multidrug-resistant pathogens. Pus specimens yielded the highest percentage (53.3%) of isolates from which VRE was obtained, and this finding is novel among studies done in Saudi Arabia.  相似文献   
36.
The propensity to associate or aggregate is one of the characteristic properties of many nonnative proteins. The aggregation of proteins is responsible for a number of human diseases and is a significant problem in biotechnology. Despite this, little is currently known about the effect of self-association on the structural properties and conformational stability of partially folded protein molecules. G-actin is shown to form equilibrium unfolding intermediate in the vicinity of 1.5 M guanidinium chloride (GdmCl). Refolding from the GdmCl unfolded state is terminated at the stage of formation of the same intermediate state. An analogous form, known as inactivated actin, can be obtained by heat treatment, or at moderate urea concentration, or by the release of Ca(2+). In all cases actin forms specific associates comprising partially folded protein molecules. The structural properties and conformational stability of inactivated actin were studied over a wide range of protein concentrations, and it was established that the process of self-association is rather specific. We have also shown that inactivated actin, being denatured, is characterized by a relatively rigid microenvironment of aromatic residues and exhibits a considerable limitation in the internal mobility of tryptophans. This means that specific self-association can play an important structure-forming role for the partially folded protein molecules.  相似文献   
37.
Successional patterns are dependent on the nature of the substratum, water flow, concentrations of organics as well as the availability of bacteria, algal spores and invertebrate larvae in the coastal environment. Bacteria play an especially important role in biofilm formation as they are generally the earliest colonizers. In the present study, both winter and summer biofilm succession patterns were examined on glass coverslips inverted on experimental racks attached at two tidal levels on a sheltered shore in Hong Kong. In the succession, bacteria were followed by diatoms and cyanobacteria. Encrusting algae appeared in the late stages of the experiment (day 80 in summer and day 60 in winter). Colonization by bacteria was much slower in summer and their density remained low throughout the experimental period. The first appearance of diatoms and cyanobacteria, however, was more rapid in the summer. Bacteria and diatoms on the low-shore surfaces also had a faster succession rate than on the high-shore surfaces, suggesting that desiccation/aerial temperature are the causal factors for such differences.  相似文献   
38.
Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3? transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full‐length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss‐of‐function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.  相似文献   
39.
IntroductionPrevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence.MethodsProtein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA.ResultsFor subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed that the induction of pro-inflammatory cytokines by TLR ligands (R837, ssRNA and ODN2395) was greatly impaired in CaSki and HeLa than C33A cells.ConclusionsIn conclusion, prednisolone and TLR antagonist (hydroxychloroquine) may down-regulate protein levels of TLR7 and TLR9 in lupus patients, thereby decreasing the innate immune response against HPV infection. Upon infection, HPV further down-regulate TLR7 and 9 levels for viral persistence. Furthermore, reduction of nucleic acid-sensing TLRs 7, 8 and 9 in carcinogenic HPVs ensures that the expression of inducible pro-inflammatory cytokines is minimized to prevent the expression of antiviral ISGs (ISG15 and Mx-1) on a biologically relevant antiviral response.  相似文献   
40.

Background  

Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号