首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   39篇
  2023年   8篇
  2022年   9篇
  2021年   13篇
  2020年   11篇
  2019年   14篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   23篇
  2014年   35篇
  2013年   51篇
  2012年   47篇
  2011年   33篇
  2010年   24篇
  2009年   28篇
  2008年   30篇
  2007年   34篇
  2006年   24篇
  2005年   21篇
  2004年   22篇
  2003年   20篇
  2002年   23篇
  2001年   5篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1987年   3篇
  1984年   2篇
  1983年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1972年   4篇
  1971年   2篇
  1970年   6篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1961年   2篇
  1956年   1篇
  1954年   1篇
  1947年   1篇
  1934年   1篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
91.
Apoptotic corpses can be engulfed and cleared by many other cell types in addition to ‘professional’ phagocytes such as macrophage. Studies of several organisms have contributed to the understanding of apoptotic corpse engulfment. Two partially redundant engulfment pathways have been characterized that act even in non-professional phagocytes to promote corpse engulfment. This review summarizes some recent progress in signaling by these pathways, including the exposure of eat-me-signals on apoptotic cells, and insights from Drosophila on the roles of the bridging receptor Six Microns Under, the non-receptor tyrosine kinase Shark, and store-operated calcium release in the Draper/Ced-1 pathway of corpse recognition and internalization. The mechanism of apoptotic phagosome maturation is outlined, and possible connections between corpse engulfment and proliferation, cell competition, and immunity are discussed.  相似文献   
92.
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
93.
94.
The purpose of this study was to design bile acid-containing methanethiosulfonate (MTS) agents with appropriate physical attributes to effectively modify the cysteine residues present in the human apical sodium-dependent bile acid transporter. Four physical properties including surface area, molecular volume, ClogP, and dipole moment were calculated for each semiempirically optimized structure of MTS compounds. The specificity of the synthesized bile acid-MTS conjugate toward native cysteines and putative bile acid interacting domains of hASBT was supported by the effect of 1mM cholyl-MTS, cholylglycyl-MTS, and 3-amino-cholyl-MTS on uptake activity, that displayed a significant decrease in TCA affinity (K(T)=69.9+/-4.5, 69.01+/-6.2, and 63.24+/-0.26 microM and J(max)=35.8+/-0.3, 24.03+/-1.22, 46.49+/-5.01 pmol mg protein min(-1), respectively). These compounds prove to be effective tools in probing the structural and functional effects of cysteine residues in bile acid binding and transporting proteins.  相似文献   
95.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind bacterial peptidoglycans (PGNs). We determined the crystal structure, to 2.1 A resolution, of the C-terminal PGN-binding domain of human PGRP-I alpha in complex with a muramyl pentapeptide (MPP) from Gram-positive bacteria containing a complete peptide stem (L-Ala-D-isoGln-L-Lys-D-Ala-D-Ala). The structure reveals important features not observed previously in the complex between PGRP-I alpha and a muramyl tripeptide lacking D-Ala at stem positions 4 and 5. Most notable are ligand-induced structural rearrangements in the PGN-binding site that are essential for entry of the C-terminal portion of the peptide stem and for locking MPP in the binding groove. We propose that similar structural rearrangements to accommodate the PGN stem likely characterize many PGRPs, both mammalian and insect.  相似文献   
96.
He Q  Kubec R  Jadhav AP  Musah RA 《Phytochemistry》2011,72(16):1939-1946
A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehydrogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachrymator. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and would be called a “sulfenic acid isomerase”, whereas the P. alliacea LFS would be termed a “sulfenic acid dehydrogenase”.  相似文献   
97.
In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure–activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs). In vivo using the androgen-dependent LAPC-4 prostate cancer xenograft model, we demonstrated for the first time that 5 is more efficacious than the 17-lyase inhibitor 3 (abiraterone)/4 (abiraterone acetate) that is currently in phase III clinical trials. In our desire to optimize the potency of 5, compounds 6 (3ξ-fluoro-) and 9 (3β-sulfamate-) designed to increase the stability and oral bioavailability of 5, respectively were evaluated in vivo. We showed, that on equimolar basis, compound 6 was ∼2-fold more efficacious versus LAPC-4 xenografts than 5, but the toxicity observed with 6 is of concern. These studies further demonstrate the efficacy of 5 in a clinically relevant prostate cancer model and justify its current clinical development as a potential treatment of prostate cancer.  相似文献   
98.
99.
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.  相似文献   
100.
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号