首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   39篇
  596篇
  2023年   8篇
  2022年   9篇
  2021年   13篇
  2020年   11篇
  2019年   14篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   23篇
  2014年   35篇
  2013年   51篇
  2012年   47篇
  2011年   33篇
  2010年   24篇
  2009年   28篇
  2008年   30篇
  2007年   34篇
  2006年   24篇
  2005年   21篇
  2004年   22篇
  2003年   20篇
  2002年   23篇
  2001年   5篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1987年   3篇
  1984年   2篇
  1983年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1972年   4篇
  1971年   2篇
  1970年   6篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1961年   2篇
  1956年   1篇
  1954年   1篇
  1947年   1篇
  1934年   1篇
排序方式: 共有596条查询结果,搜索用时 8 毫秒
91.
92.
The trans Watson-Crick/Watson-Crick family of base pairs represent a geometric class that play important structural and possible functional roles in the ribosome, tRNA, and other functional RNA molecules. They nucleate base triplets and quartets, participate as loop closing terminal base pairs in hair pin motifs and are also responsible for several tertiary interactions that enable sequentially distant regions to interact with each other in RNA molecules. Eleven representative examples spanning nine systems belonging to this geometric family of RNA base pairs, having widely different occurrence statistics in the PDB database, were studied at the HF/6-31G (d, p) level using Morokuma decomposition, Atoms in Molecules as well as Natural Bond Orbital methods in the optimized gas phase geometries and in their crystal structure geometries, respectively. The BSSE and deformation energy corrected interaction energy values for the optimized geometries are compared with the corresponding values in the crystal geometries of the base pairs. For non protonated base pairs in their optimized geometry, these values ranged from -8.19 kcal/mol to -21.84 kcal/mol and compared favorably with those of canonical base pairs. The interaction energies of these base pairs, in their respective crystal geometries, were, however, lesser to varying extents and in one case, that of A:A W:W trans, it was actually found to be positive. The variation in RMSD between the two geometries was also large and ranged from 0.32-2.19 A. Our analysis shows that the hydrogen bonding characteristics and interaction energies obtained, correlated with the nature and type of hydrogen bonds between base pairs; but the occurrence frequencies, interaction energies, and geometric variabilities were conspicuous by the absence of any apparent correlation. Instead, the nature of local interaction energy hyperspace of different base pairs as inferred from the degree of their respective geometric variability could be correlated with the identities of free and bound hydrogen bond donor/acceptor groups present in interacting bases in conjunction with their tertiary and neighboring group interaction potentials in the global context. It also suggests that the concept of isostericity alone may not always determine covariation potentials for base pairs, particularly for those which may be important for RNA dynamics. These considerations are more important than the absolute values of the interaction energies in their respective optimized geometries in rationalizing their occurrences in functional RNAs. They highlight the importance of revising some of the existing DNA based structure analysis approaches and may have significant implications for RNA structure and dynamics, especially in the context of structure prediction algorithms.  相似文献   
93.
Syntheses of 3,3-diheteroaromatic oxindole derivatives has been achieved by coupling indole-2,3-dione (isatin) with differently substituted indoles and pyrrole in presence of I2 in i-PrOH. The in vitro spermicidal potentials and the mode of spermicidal action of the synthesized analogues were evaluated and the derivative, 3,3-bis (5-methoxy-1H-indol-3-yl) indolin-2-one (3d) exhibited most significant activity.  相似文献   
94.
Mucin-type O-gly co sy la tion is initiated by a large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously gly co sylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring gly co sy la tion (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases.Mucin-type O-glycosylation is a common post-translational modification of secreted and membrane-associated proteins. O-Glycan biosynthesis is initiated by the transfer of GalNAc from UDP-GalNAc to the hydroxyl groups of serine or threonine residues in a polypeptide, catalyzed by a family of polypeptide N-α-acetylgalactosaminyltransferases (ppGalNAc Ts).5 To date, 16 mammalian members have been reported in the literature (116) with a total of at least 20 members currently present in the human genome data base. Multiple members of the ppGalNAc T family have also been identified in Drosophila (9, 10, 14), Caenorhabditis elegans (3, 8), and single and multicellular organisms (1720). Several members show close sequence orthologues across species suggesting that the ppGalNAc Ts are responsible for biologically significant functions that have been conserved during evolution. For example, in Drosophila four isoforms have close sequence orthologues to the mammalian transferases. Of the two that have been recently compared, nearly identical peptide substrate specificities have been observed between the fly and mammals, suggesting common but presently unknown functions preserved across these diverse species (21).Recently, several ppGalNAc T isoforms have been shown to be important for normal development or cellular processes. For example, inactive mutations in the fly PGANT35A (the T11 orthologue in mammals) are lethal because of the disruption of the tracheal tube structures (9, 10, 22), whereas mutations in PGANT3 alter epithelial cell adhesion in the Drosophila wing blade resulting in wing blistering (23). In humans, mutations in ppGalNAc T3 are associated with familial tumoral calcinosis, the result of the abnormal processing and secretion of the phosphaturic factor FGF23 (24, 25). Human ppGalNAc T14 has been suggested to modulate apoptotic signaling in tumor cells by its glycosylation of the proapoptotic receptors DLR4 and DLR5 (26), and very recently the specific O-glycosylation of the TGFB-II receptor (ActR-II) by the GalNTL1 has been shown to modulate its signaling in development (16).Historically, the major targets of the ppGalNAc Ts have been thought to be heavily O-glycosylated mucin domains of membrane and secreted glycoproteins. Such domains typically contain 15–30% Ser or Thr, which are highly (>50%) substituted by GalNAc. One question in the field is as follows. How is this high degree of peptide core glycosylation achieved and is it related to the large number of ppGalNAc isoforms, some of which may even have specific mucin domain preferences? Interestingly, some members of the ppGalNAc T family are known to prefer substrates that have been previously modified with O-linked GalNAc on nearby Ser/Thr residues, hence having so-called glycopeptide or filling-in activities, i.e. ppGalNAc T7 and T10 (8, 2729). Others simply possess altered preferences against glycopeptide substrates, i.e. ppGalNAc T2 and T4 (3033), or may be inhibited by neighboring glycosylation, i.e. ppGalNAc T1 and T2 (29, 34, 35). These latter transferases have been called early or initiating transferases, preferring nonglycosylated over-glycosylated substrates. Presently, little is known about which factors dictate the different peptide/glycopeptide specificities among the ppGalNAc Ts.The ppGalNAc Ts consist of an N-terminal catalytic domain tethered by a short linker to a C-terminal ricin-like lectin domain containing three recognizable carbohydrate-binding sites (36). Because ppGalNAc T7 and T10 prefer to transfer GalNAc to glycopeptide acceptors, it has been widely assumed that their C-terminal lectin domains would play significant roles in this activity, as has been demonstrated for other family members (27, 28, 32). Recently, Kubota et al. (37) solved the crystal structure of ppGalNAc T10 in complex with Ser-GalNAc specifically bound to its lectin domain. In this work (37), the authors further demonstrated that a T10 lectin domain mutant indeed had altered specificity against GalNAc-containing glycopeptide substrates when the acceptor Ser/Thr site was distal from the pre-existing glycopeptide GalNAc site. However, it was also observed that the lectin mutant still possessed relatively unaltered glycopeptide activity when the acceptor Ser/Thr site was directly N-terminal of a pre-existing glycopeptide GalNAc site. Kubota et al. (37) therefore concluded that for ppGalNAc T10, both its lectin and indeed its catalytic domain must contain distinct peptide GalNAc recognition sites. In support of this, Raman et al. (33) have shown that the complete removal of the ppGalNAc T10 lectin domain only slightly alters its specificity against distal glycopeptide substrates while showing no difference in its ability to glycosylate residues directly N-terminal of an existing site of glycosylation. Thus, it seems that the catalytic domain of ppGalNAc T10 may have specific requirements for a peptide O-linked GalNAc in at least the +1 position (toward the C terminus) of residues being glycosylated. As no systematic determination of the glycopeptide binding properties of the ppGalNAc Ts catalytic domain has been performed, it is unknown whether additional GalNAc peptide-binding sites exist in T10 or, for that matter, any of the other ppGalNAc Ts.We have recently reported the use of oriented random peptide substrates, GAGA(X)nT(X)nAGAGK (where X indicates randomized amino acid positions and n = 3 and 5) for determining the peptide substrate specificities of mammalian ppGalNAc T1, T2, and their fly orthologues (21, 38). In the present work, we extend this approach to the determination of the catalytic domain glycopeptide (Ser/Thr-O-GalNAc) substrate preferences for ppGalNAc T1, T2, and T10 employing two n = 4 oriented random glycopeptide libraries (21). Interestingly, ppGalNAc T10 displays few significant enhancements and specifically lacks the Pro residue enhancements observed for ppGalNAc T1 and T2. These findings further demonstrate the vast substrate diversity of the catalytic domains of the ppGalNAc T family of transferases.

TABLE 1

ppGalNAc transferase random substrates utilized in this workPVI, PVII, GP-I, and GP-II random (glyco)peptide substrates.
PeptideSequenceNo. of unique sequences
GAGAXXXXXTXXXXXAGAGK
P-VIX = G, A, P, V, L, Y, E, Q, R, H10 × 109
P-VIIX = G, A, P, I, M, F, D, N, R, K10 × 109

GAGAXXXXTXXXXAGAG
GP-IX = G, A, P, V, I, F, Y, E, D, N, R, K, H, and Ser-O-α-GalNAc1.47 × 109

GAGAXXXX(Thr-O-α-GalNAc)XXXXAGAG
GP-IIX = G, A, P, V, I, F, Y, E, D, N, R, K, H, S1.47 × 109
Open in a separate window  相似文献   
95.
Based on an established 3D pharmacophore, a series of quinoline derivatives were synthesized. The opioidergic properties of these compounds were determined by a competitive binding assay using 125I-Dynorphine, 3H-DAMGO and 125I-DADLE for κ, μ, and δ receptors, respectively. Results showed varying degree of activities of the compounds to κ and μ opioid receptors with negligible interactions at the δ receptor. The compound, S4 was the most successful in inhibiting the two most prominent quantitative features of naloxone precipitated withdrawal symptoms - stereotyped jumping and body weight loss. Determination of IC50 of S4 revealed a greater affinity towards μ compared to κ receptor. In conclusion, quinoline derivatives of S4 like structure offer potential tool for treatment of narcotic addictions.  相似文献   
96.
Apoptotic corpses can be engulfed and cleared by many other cell types in addition to ‘professional’ phagocytes such as macrophage. Studies of several organisms have contributed to the understanding of apoptotic corpse engulfment. Two partially redundant engulfment pathways have been characterized that act even in non-professional phagocytes to promote corpse engulfment. This review summarizes some recent progress in signaling by these pathways, including the exposure of eat-me-signals on apoptotic cells, and insights from Drosophila on the roles of the bridging receptor Six Microns Under, the non-receptor tyrosine kinase Shark, and store-operated calcium release in the Draper/Ced-1 pathway of corpse recognition and internalization. The mechanism of apoptotic phagosome maturation is outlined, and possible connections between corpse engulfment and proliferation, cell competition, and immunity are discussed.  相似文献   
97.
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
98.
The purpose of this study was to design bile acid-containing methanethiosulfonate (MTS) agents with appropriate physical attributes to effectively modify the cysteine residues present in the human apical sodium-dependent bile acid transporter. Four physical properties including surface area, molecular volume, ClogP, and dipole moment were calculated for each semiempirically optimized structure of MTS compounds. The specificity of the synthesized bile acid-MTS conjugate toward native cysteines and putative bile acid interacting domains of hASBT was supported by the effect of 1mM cholyl-MTS, cholylglycyl-MTS, and 3-amino-cholyl-MTS on uptake activity, that displayed a significant decrease in TCA affinity (K(T)=69.9+/-4.5, 69.01+/-6.2, and 63.24+/-0.26 microM and J(max)=35.8+/-0.3, 24.03+/-1.22, 46.49+/-5.01 pmol mg protein min(-1), respectively). These compounds prove to be effective tools in probing the structural and functional effects of cysteine residues in bile acid binding and transporting proteins.  相似文献   
99.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind bacterial peptidoglycans (PGNs). We determined the crystal structure, to 2.1 A resolution, of the C-terminal PGN-binding domain of human PGRP-I alpha in complex with a muramyl pentapeptide (MPP) from Gram-positive bacteria containing a complete peptide stem (L-Ala-D-isoGln-L-Lys-D-Ala-D-Ala). The structure reveals important features not observed previously in the complex between PGRP-I alpha and a muramyl tripeptide lacking D-Ala at stem positions 4 and 5. Most notable are ligand-induced structural rearrangements in the PGN-binding site that are essential for entry of the C-terminal portion of the peptide stem and for locking MPP in the binding groove. We propose that similar structural rearrangements to accommodate the PGN stem likely characterize many PGRPs, both mammalian and insect.  相似文献   
100.
In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure–activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs). In vivo using the androgen-dependent LAPC-4 prostate cancer xenograft model, we demonstrated for the first time that 5 is more efficacious than the 17-lyase inhibitor 3 (abiraterone)/4 (abiraterone acetate) that is currently in phase III clinical trials. In our desire to optimize the potency of 5, compounds 6 (3ξ-fluoro-) and 9 (3β-sulfamate-) designed to increase the stability and oral bioavailability of 5, respectively were evaluated in vivo. We showed, that on equimolar basis, compound 6 was ∼2-fold more efficacious versus LAPC-4 xenografts than 5, but the toxicity observed with 6 is of concern. These studies further demonstrate the efficacy of 5 in a clinically relevant prostate cancer model and justify its current clinical development as a potential treatment of prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号