首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   39篇
  2023年   8篇
  2022年   8篇
  2021年   13篇
  2020年   11篇
  2019年   14篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   23篇
  2014年   35篇
  2013年   51篇
  2012年   47篇
  2011年   33篇
  2010年   24篇
  2009年   28篇
  2008年   30篇
  2007年   34篇
  2006年   24篇
  2005年   21篇
  2004年   22篇
  2003年   20篇
  2002年   23篇
  2001年   5篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1987年   3篇
  1984年   2篇
  1983年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1972年   4篇
  1971年   2篇
  1970年   6篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1961年   2篇
  1956年   1篇
  1954年   1篇
  1947年   1篇
  1934年   1篇
排序方式: 共有595条查询结果,搜索用时 31 毫秒
461.
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis‐1 and DLP‐1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down‐regulating the expression of pexophagy associated proteins (p‐AMPKα, p‐ULK‐1, Atg5, Atg7, Beclin‐1, LC3‐II, TFEB and Keap‐1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor‐γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.  相似文献   
462.
The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with “state” fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased “trait” fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a “fatigue-network” in MS.  相似文献   
463.
Thiadiazoles are one of the most widely utilized agents in medicinal chemistry, having a wide range of pharmacologic activity. Microtubules (MTs) have always remained a sought-after target in rapidly proliferating cancer cells. We screened for the growth inhibitory effect of synthetic 5-(3-indolyl)-2-substituted-1,3,4-thiadiazoles on cancer cells and identified NMK-TD-100, as the most potent agent. Cell viability experiments using human cervical carcinoma cell line (HeLa cells) indicated that the IC50 value was 1.42±0.11 µM for NMK-TD-100 for 48 h treatment. In further study, we examined the mode of interaction of NMK-TD-100 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. NMK-TD-100 induced arrest in mitotic phase of cell cycle, caused decline in mitochondrial membrane potential and induced apoptosis in HeLa cells. Immunofluorescence studies using an anti-α-tubulin antibody showed a significant depolymerization of the interphase microtubule network and spindle microtubule in HeLa cells in a concentration-dependent manner. However, the cytotoxicity of NMK-TD-100 towards human peripheral blood mononuclear cells (PBMC) was lower compared to that in cancer cells. Polymerization of tissue purified tubulin into microtubules was inhibited by NMK-TD-100 with an IC50 value of 17.5±0.35 µM. The binding of NMK-TD-100 with tubulin was studied using NMK-TD-100 fluorescence enhancement and intrinsic tryptophan fluorescence of tubulin. The stoichiometry of NMK-TD-100 binding to tubulin is 1:1 (molar ratio) with a dissociation constant of ~1 µM. Fluorescence spectroscopic and molecular modeling data showed that NMK-TD-100 binds to tubulin at a site which is very near to the colchicine binding site. The binding of NMK-TD-100 to tubulin was estimated to be ~10 times faster than that of colchicine. The results indicated that NMK-TD-100 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided insights into its potential of being a chemotherapeutic agent.  相似文献   
464.
Keratinocytes contribute to melanocyte activity by influencing their microenvironment, in part, through secretion of paracrine factors. Here, we discovered that p53 directly regulates Edn1 expression in epidermal keratinocytes and controls UV‐induced melanocyte homeostasis. Selective ablation of endothelin‐1 (EDN1) in murine epidermis (EDN1ep?/?) does not alter melanocyte homeostasis in newborn skin but decreases dermal melanocytes in adult skin. Results showed that keratinocytic EDN1 in a non‐cell autonomous manner controls melanocyte proliferation, migration, DNA damage, and apoptosis after ultraviolet B (UVB) irradiation. Expression of other keratinocyte‐derived paracrine factors did not compensate for the loss of EDN1. Topical treatment with EDN1 receptor (EDNRB) antagonist BQ788 abrogated UV‐induced melanocyte activation and recapitulated the phenotype seen in EDN1ep?/? mice. Altogether, the present studies establish an essential role of EDN1 in epidermal keratinocytes to mediate UV‐induced melanocyte homeostasis in vivo.  相似文献   
465.
Hereditary breast cancer constitutes 5–10% of all breast cancer cases. Inherited mutations in the BRCA1 and BRCA2 tumor-suppressor genes account for the majority of hereditary breast cancer cases. The BRCA1 C-terminal region (BRCT) has a functional duplicated globular domain, which helps with DNA damage repair and cell cycle checkpoint protein control. More than 100 distinct BRCA1 missense variants with structural and functional effects have been documented within the BRCT domain. Interpreting the results of mutation screening of tumor-suppressor genes that can have high-risk susceptibility mutations is increasingly important in clinical practice. This study includes a novel mutation, p.His1746 Pro (c.5237A>C), which was found in BRCA1 exon 20 of a breast cancer patient. In silico analysis suggests that this mutation could alter the stability and orientation of the BRCT domain and the differential binding of the BACH1 substrate.  相似文献   
466.
A promising method of micropropagation of Stevia rebaudiana Bertoni has been developed with an aim to increase the biomass, survivability of the plantlets and stevioside production, using chlorocholine chloride (CCC). Microshoots transferred to the MS medium containing different combinations CCC and IBA were found to be most effective in terms of growth pattern, hardening ability of the plantlets and stevioside content, compared to MS medium containing either IBA or CCC. Among other combinations tested, MS medium supplemented with 3 mg/l CCC and 3 mg/l IBA was found most effective in inducing significant changes like reduced shoot length, increased number of roots, higher leaf size, increased biomass and chlorophyll retaining capacity, higher survival percentage and most importantly the elevated stevioside content. Collectively, the major observations of this research indicate that application of CCC in micropropagation of S. rebaudiana Bertoni is a promising approach and has commercial prospects.  相似文献   
467.
468.
Atherosclerosis is one of the major complications of diabetes and involves endothelial dysfunction, matrix alteration, and most importantly migration and proliferation of vascular smooth muscle cells (VSMCs). Although hyperglycemia and hyperinsulinemia are known to contribute to atherosclerosis, little is known about the specific cellular signaling pathways that mediate the detrimental hyperinsulinemic effects in VSMCs. Therefore, we investigated the cellular mechanisms of hyperinsulinemia-induced migration and proliferation of VSMCs. VSMCs were treated with insulin (100 nM) for 6 days and subjected to various physiological and molecular investigations. VSMCs subjected to hyperinsulinemia exhibited increased migration and proliferation, and this is paralleled by oxidative stress [increased NADPH oxidase activity, NADPH oxidase 1 mRNA expression, and reactive oxygen species (ROS) generation], alterations in mitochondrial physiology (membrane depolarization, decreased mitochondrial mass, and increased mitochondrial ROS), changes in mitochondrial biogenesis-related genes (mitofusin 1, mitofusin 2, dynamin-related protein 1, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, peroxisome proliferator-activated receptor gamma coactivator 1-beta, nuclear respiratory factor 1, and uncoupling protein 2), and increased Akt phosphorylation. Diphenyleneiodonium, a known NADPH oxidase inhibitor significantly inhibited migration and proliferation of VSMCs and normalized all the above physiological and molecular perturbations. This study suggests a plausible crosstalk between mitochondrial dysfunction and oxidative stress under hyperinsulinemia and emphasizes counteracting mitochondrial dysfunction and oxidative stress as a novel therapeutic strategy for atherosclerosis.  相似文献   
469.

Background

In a previous study, we deleted three aldehyde dehydrogenase (ALDH) genes, involved in ethanol metabolism, from yeast Saccharomyces cerevisiae and found that the triple deleted yeast strain did not grow on ethanol as sole carbon source. The ALDHs were NADP dependent cytosolic ALDH1, NAD dependent mitochondrial ALDH2 and NAD/NADP dependent mitochondrial ALDH5. Double deleted strain ΔALDH2+ΔALDH5 or ΔALDH1+ΔALDH5 could grow on ethanol. However, the double deleted strain ΔALDH1+ΔALDH2 did not grow in ethanol.

Methods

Triple deleted yeast strain was used. Mitochondrial NAD dependent ALDH from yeast or human was placed in yeast cytosol.

Results

In the present study we found that a mutant form of cytoplasmic ALDH1 with very low activity barely supported the growth of the triple deleted strain (ΔALDH1+ΔALDH2+ΔALDH5) on ethanol. Finding the importance of NADP dependent ALDH1 on the growth of the strain on ethanol we examined if NAD dependent mitochondrial ALDH2 either from yeast or human would be able to support the growth of the triple deleted strain on ethanol if the mitochondrial form was placed in cytosol. We found that the NAD dependent mitochondrial ALDH2 from yeast or human was active in cytosol and supported the growth of the triple deleted strain on ethanol.

Conclusion

This study showed that coenzyme preference of ALDH is not critical in cytosol of yeast for the growth on ethanol.

General significance

The present study provides a basis to understand the coenzyme preference of ALDH in ethanol metabolism in yeast.  相似文献   
470.
The failure of chemotherapeutic drugs in treatment of various cancers is attributed to the acquisition of drug resistance. However, the migration mechanisms of drug-resistant cancer cells remain incompletely understood. Here we address this question from a biophysical perspective by mapping the phenotypic alterations in ovarian cancer cells (OCCs) resistant to cisplatin and paclitaxel. We show that cisplatin-resistant (CisR), paclitaxel-resistant (PacR) and dual drug-resistant (i.e., resistant to both drugs) OCCs are more contractile and softer than drug-sensitive cells. Protease inhibition suppresses invasion of CisR cells but not of PacR cells, indicative of a protease-dependent mode of migration in CisR cells and a protease-independent mode of migration in PacR. Despite these differences, actomyosin contractility, mediated by the RhoA-ROCK2-Myosin II signaling pathway, regulates both modes of migration. Confined migration experiments establish the role of myosin IIA and IIB in mediating nuclear translocation and regulation of proteolytic activity. Collectively, our results highlight the importance of myosin II as a potential therapeutic target for treatment of drug-resistant ovarian cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号