首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   13篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   2篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   10篇
  2015年   8篇
  2014年   22篇
  2013年   37篇
  2012年   15篇
  2011年   32篇
  2010年   12篇
  2009年   14篇
  2008年   22篇
  2007年   13篇
  2006年   12篇
  2005年   15篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
91.
The phospholipase A(2) (PLA(2)) enzymes are activated by binding to phospholipid membranes. Although the N-terminal alpha-helix of group I/II PLA(2)s plays an important role in the productive mode membrane binding of the enzymes, its role in the structural aspects of membrane-induced activation of PLA(2)s is not well understood. In order to elucidate membrane-induced conformational changes in the N-terminal helix and in the rest of the PLA(2), we have created semisynthetic human group IB PLA(2) in which the N-terminal decapeptide is joined with the (13)C-labeled fragment, as well as a chimeric protein containing the N-terminal decapeptide from human group IIA PLA(2) joined with a (13)C-labeled fragment of group IB PLA(2). Infrared spectral resolution of the unlabeled and (13)C-labeled segments suggests that the N-terminal helix of membrane-bound IB PLA(2) has a more rigid structure than the other helices. On the other hand, the overall structure of the chimeric PLA(2) is more rigid than that of the IB PLA(2), but the N-terminal helix is more flexible. A combination of homology modeling and polarized infrared spectroscopy provides the structure of membrane-bound chimeric PLA(2), which demonstrates remarkable similarity but also distinct differences compared with that of IB PLA(2). Correlation is delineated between structural and membrane binding properties of PLA(2)s and their N-terminal helices. Altogether, the data provide evidence that the N-terminal helix of group I/II PLA(2)s acts as a regulatory domain that mediates interfacial activation of these enzymes.  相似文献   
92.
BACKGROUND: Lymphovascular ligation before tumour manipulation during colorectal cancer resection is termed the 'no-touch isolation' technique. It aims to reduce the intra-operative dissemination of colorectal cancer cells. Recently, the detection of circulating tumour cells has been enhanced by molecular biology techniques. This paper reviews the evidence for the no-touch isolation technique in light of the recent developments in circulating tumour cell detection. METHODS: Studies investigating the effect of colorectal cancer surgery on circulating tumour cells were identified by a Medline search using the subject headings colorectal neoplasms and neoplasm circulating cells together with the map term 'no-touch isolation technique'. Further references were obtained from key articles. RESULTS: Molecular biological techniques have improved the detection of circulating colorectal cancer cells. There is a trend towards reduced tumour cell dissemination with the no-touch technique compared with the conventional method. However the benefit in terms of improved patient survival remains unproven. CONCLUSION: The no-touch isolation technique reduces circulating tumour cell dissemination but further work is needed to determine the significance of this with regards to patient survival.  相似文献   
93.
94.
The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can''t be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H) coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H) proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces.  相似文献   
95.
96.
97.
Apart from playing key roles in drug metabolism and adverse drug–drug interactions, CYPs are potential drug targets to treat a variety of diseases. The intervention of over expression of P450 1A1 (CYP1A1) in tumor cells is identified as a novel strategy for anticancer therapy. We investigated three isoforms of CYP1 family (CYP1A1, CYP1A2, and CYP1B1) for their substrate specificity. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics. This can help in design of new antitumor molecule specifically metabolized by CYP1A1 to mediate their antitumor activity. In the present study, we carried out the comparative protein structure analysis of the three isoforms. Sequence alignment, root mean square deviation (RMSD) analysis, B-factor analysis was performed to give a better understanding of the macromolecular features involved in substrate specificity and to understand the interplay between protein dynamics and functions which will have important implications on rational design of anticancer drugs. We identified the differences in amino acid residues among the three isoforms of CYP1 family, which may account for differential substrate specificity. Six putative substrate recognition sequences are characterized along with the regions they form in the protein structure. Further the RMSD and B-factor analysis provides the information about the identified residues having the maximum RMSD and B-factor deviations.  相似文献   
98.
To assay the dissolution samples of a drug product from several sources, a simple but broadly applicable analytical method is always desired. For the liquid-filled cyclosporine capsules, while analyzing the dissolution samples, the current compendial and literature HPLC methods have been found to be inadequate to provide satisfactory separation of the drug and the excipient peaks. Accordingly, a suitable isocratic reverse-phase HPLC method was developed for the analysis of dissolution samples of liquid-filled cyclosporine capsules. The method successfully separated the cyclosporine peak from the interfering chromatographic peaks of the excipients. The method was validated according to the ICH and FDA guidelines. Specificity, selectivity, linearity, accuracy, precision, and robustness were established over 3 days as part of method validation. Additionally, the degradation kinetics of cyclosporine in dissolution media was determined. Cyclosporine degradation followed a zero-order kinetics in the dissolution media with the respective rate constants of −3.5, −1.5, and −0.3%/h at 37°C, 25°C, and 10°C.Key words: cyclosporine, degradation, dissolution, HPLC, liquid-filled capsules  相似文献   
99.
Glycation induced protein aggregation has been implicated in the development of diabetic complications and neurodegenerative diseases. These aggregates are known to be resistant to proteolytic digestion. Here we report the identification of protease resistant proteins from the streptozotocin induced diabetic rat kidney, which included enzymes in glucose metabolism and stress response proteins. These protease resistant proteins were characterized to be advanced glycation end products modified and ubiquitinated by immunological and mass spectrometry analysis. Further, diabetic rat kidney exhibited significantly impaired proteasomal activity. The functional analysis of identified physiologically important enzymes showed that their activity was reduced in diabetic condition. Loss of functional activity of these proteins was compensated by enhanced gene expression. Aggregation prone regions were predicted by in silico analysis and compared with advanced glycation end products modification sites. These findings suggested that the accumulation of protein aggregates is an inevitable consequence of impaired proteasomal activity and protease resistance due to advanced glycation end products modification.One of the foremost causes of diabetic complications is formation of sugar-derived substances called advanced glycation end products (AGEs),1 which affect target cell through altered protein structure- function, matrix-matrix/matrix-cell interaction, and by activation of receptor for AGE (RAGE) signaling pathway (1). Although the accumulation of AGEs is a slow process in healthy individuals, their formation is markedly accelerated in diabetes because of hyperglycemia (2). AGE-modified proteins are thermostable and resistant to denaturation. The stability of proteins is believed to be because of additional negative charge (highly oxidized state) brought by AGE modification of proteins, which may contribute to protease resistance (3). Glycation induced protease resistance has been studied in collagen (46) and amyloid (7). In addition to glycation, impairment in the proteasomal function may facilitate accumulation of protease resistant protein aggregates in diabetes. Proteasome mediated protein degradation is a central quality control mechanism in the cell. Activity of proteasome is affected during aging (8) and physiological disorders like diabetes (9) resulting in accumulation of ubiquitinated protein aggregates. In muscle extract of diabetic rats, accumulation of toxic glycated proteins was observed because of decreased proteasomal activity (69). This proteolytic system is of particular importance in protecting cells against adverse conditions, such as heat shock, glycation, or oxidative stress. However, when the generation of damaged proteins exceeds the capacity of the cell to degrade them, they are progressively accumulated leading to cytotoxicity (10). Severely aggregated, cross-linked, and oxidized proteins are poor substrates for degradation and inhibit the proteasomal activity (11).The kidney is one of the main organs affected in diabetes caused by accumulation of AGEs. Proteins of extracellular matrix, kidney, as well as proteins from circulation, get AGE modified and trapped in the kidney (12). Both intracellular and extracellular AGEs have been observed in the diabetic kidney. Extracellular AGEs interact with the RAGE leading to apoptosis and inflammation (13), whereas intracellular AGEs are formed because of various dicarbonyls. Eventually, both types of the AGEs contribute to kidney damage (14). Furthermore, methyl glyoxal, a highly reactive dicarbonyl covalently modifies the 20S proteasome, decreasing its activity in the diabetic kidney (15). Together AGE modification and decreased proteasomal function may be responsible for the accumulation of protease resistant proteins (PRPs) in the diabetic kidney. In our previous study, we have reported the presence of AGE modified proteins in the kidney of the streptozotocin (STZ) induced diabetic rat (12). The current work is inspired by a DARTS (drug affinity responsive target stability) approach, wherein the drug targets are relatively less susceptible to protease action on drug binding (16). A similar approach was adopted here to identify protease resistant proteins from the diabetic kidney. These proteins were characterized to be AGE modified and ubiquitinated by Western blot analysis and mass spectrometry. Functional characterization and expression analysis of some of the identified proteins was performed to gain insight into the consequences of these modifications in diabetes. Further, aggregation prone regions in these proteins were predicted by the in silico approach. These findings shed light on the role of identified PRPs in diabetic complications.  相似文献   
100.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号