全文获取类型
收费全文 | 562篇 |
免费 | 30篇 |
专业分类
592篇 |
出版年
2023年 | 4篇 |
2022年 | 11篇 |
2021年 | 13篇 |
2020年 | 3篇 |
2019年 | 11篇 |
2018年 | 17篇 |
2017年 | 16篇 |
2016年 | 17篇 |
2015年 | 19篇 |
2014年 | 32篇 |
2013年 | 55篇 |
2012年 | 34篇 |
2011年 | 48篇 |
2010年 | 19篇 |
2009年 | 23篇 |
2008年 | 43篇 |
2007年 | 25篇 |
2006年 | 24篇 |
2005年 | 30篇 |
2004年 | 27篇 |
2003年 | 17篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 6篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1980年 | 4篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1974年 | 2篇 |
1973年 | 4篇 |
1972年 | 4篇 |
1970年 | 2篇 |
1969年 | 2篇 |
1966年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有592条查询结果,搜索用时 0 毫秒
11.
Rupali M. Khadake Prabhakar K. Ranjekar Abhay M. Harsulkar 《Molecular biotechnology》2009,42(2):168-174
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic
acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified
from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence
comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level
and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning
regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to
be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining
tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However,
exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2. 相似文献
12.
Mycobacterium tuberculosis ClpC1 is a member of the Hsp100/Clp AAA+ family of ATPases. The primary sequence of ClpC1 contains two N-terminal domains and two nucleotide binding domains (NBD). The second NBD has a long C-terminal sub-domain containing several motifs important for substrate interaction. Generally, ClpC proteins are highly conserved, however presence of C-terminal domains of variable lengths is a remarkable difference in ClpC from different species. In this study, we constructed deletion mutants at the C-terminus of M. tuberculosis ClpC1 to determine its role in the structure and function of the protein. In addition, a deletion mutant having the two conserved N-terminal domains deleted was also constructed to investigate the role of these domains in M. tuberculosis ClpC1 function. The N-terminal domains were found to be dispensable for the formation of oligomeric structure, and ATPase and chaperone activities. However, deletions beyond a specific region in the C-terminus of the ClpC1 resulted in oligomerization defects and loss of chaperonic activity of the protein without affecting its ATPase activity. The truncated mutants, defective in oligomerization were also found to have lost the chaperonic activity, showing the formation of oligomer to be required for the chaperonic activity of M. tuberculosis ClpC1. The current study has identified a region in the C-terminus of M. tuberculosis ClpC1 which is essential for its oligomerization and in turn its function. 相似文献
13.
There is a critical need to evaluate lithium–sulfur (Li–S) batteries with practically relevant high sulfur loadings and minimal electrolyte. Under such conditions, the concentration of soluble polysulfide intermediates in the electrolyte drastically increases, which can alter the fundamental nature of the solution‐mediated discharge and thereby the total sulfur utilization. In this work, an investigation into various high donor number (DN) electrolytes that allow for increased polysulfide dissolution is presented, and the way in which this property may in fact be necessary for increasing sulfur utilization at low electrolyte and high loading conditions is demonstrated. The solvents dimethylacetamide, dimethyl sulfoxide, and 1‐methylimidazole are holistically evaluated against dimethoxyethane as electrolyte co‐solvents in Li–S cells, and they are used to investigate chemical and electrochemical properties of polysulfide species at both dilute and practically relevant conditions. The nature of speciation exhibited by lithium polysulfides is found to vary significantly between these concentrations, particularly with regard to the S3?? species. Furthermore, the extent of the instability in conventional electrolyte solvents and high DN solvents with both lithium metal and polysulfides is thoroughly investigated. These studies establish a basis for future efforts into rationally designing an optimal electrolyte for a lean electrolyte, high energy density Li–S battery. 相似文献
14.
Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or primary amine contents with respect to the intraperitoneal (IP) biocompatibility and the propensity to induce pro-inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after IP administration and had no pro-inflammatory effect on naïve macrophages. Comparison with other chitosans indicates that these properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly, ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide (LPS). This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS, and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional biomaterial. 相似文献
15.
Full engagement of liganded maltose‐binding protein stabilizes a semi‐open ATP‐binding cassette dimer in the maltose transporter 下载免费PDF全文
Frances Joan D. Alvarez Cédric Orelle Yan Huang Ruchika Bajaj R. Michael Everly Candice S. Klug Amy L. Davidson 《Molecular microbiology》2015,98(5):878-894
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP. 相似文献
16.
Nemec KN Pande AH Qin S Bieber Urbauer RJ Tan S Moe D Tatulian SA 《Biochemistry》2006,45(41):12448-12460
Phospholipase A(2) (PLA(2)) enzymes become activated by binding to biological membranes and hydrolyze phospholipids to free fatty acids and lyso-phospholipids, the precursors of inflammatory mediators. To understand the functional significance of amino acid residues at key positions, we have studied the effects of the substitution of Val(3) (membrane binding surface) and Phe(5) (substrate binding pocket) of human group IIA PLA(2) by tryptophan on the structure and function of the enzyme. Despite the close proximity of the sites of mutations, the V3W mutation results in substantial enhancement of the enzyme activity, whereas the F5W mutant demonstrates significantly suppressed activity. A structural analysis of all three proteins free in buffer and bound to membranes indicates that large differences in activities result from distinct conformational changes in PLA(2)s upon membrane binding. Although PLA(2) and the V3W mutant demonstrate a decrease in helical content and an increase in helix flexibility, the F5W mutant experiences partial distortion of the alpha-helical structure presumably resulting from the tendency of Trp(5) to insert into the membrane. Furthermore, whereas the PLA(2) and the V3W mutant bind to the membrane at similar and apparently productive-mode orientation, the F5W mutant binds to membranes with a distinctly different orientation. It is suggested that both the stimulatory effect of the V3W mutation and the inhibitory effect of the F5W mutation result from the high affinity of Trp for the membrane-water interface. Although Trp(3) at the membrane binding face of PLA(2) facilitates the proper membrane binding of the enzyme, Trp(5) in the internal substrate binding site causes partial unwinding of the N-terminal helix in order to interact with the membrane. 相似文献
17.
Santosh S. Chobe Bhaskar S. Dawane Khaled M. Tumbi Prajwal P. Nandekar Abhay T. Sangamwar 《Bioorganic & medicinal chemistry letters》2012,22(24):7566-7572
The DNA molecule is a target for plethora of anticancer and antiviral drugs that forms covalent and non-covalent adducts with major or minor groove of DNA. In present study we synthesized series of novel Pyrazolo [1,5-a]pyrimidine derivatives. The newly synthesized compounds were characterized by elemental analysis, IR, 1H NMR, and mass spectral data. The selected compounds were studied for interaction with Calf thymus DNA (CT-DNA) using electronic spectra, viscosity measurement and thermal denaturation studies. Further, molecular interactions were revealed for compound IIIa and IVa by computational methodologies. The preferred mode of ligand binding with double helical DNA as well as preferable DNA groove were explored by molecular docking in different DNA models. 相似文献
18.
Molecular and biotechnological aspects of xylanases 总被引:53,自引:0,他引:53
Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications. 相似文献
19.
Of six alkalitolerant, extracellular protease producing bacterial strains isolated, DP2 displayed maximum activity. This organism was designated as Streptomyces sp. DP2 and identified as Streptomyces ambofaciens. Maximum protease yield was observed after 48 hours of submerged fermentation using various carbon and nitrogen sources. Fructose was found to be the best substrate for protease production, followed by maltose, lactose and wheat bran. Mustard cake is reported for the first time as the most ideal nitrogen source although soybean meal also gave comparable yield. The protease produced by Streptomyces sp. DP2 exhibited extensive activity over a broad pH range (4–12) with maximum activity at pH 8, and was active over a broad range of elevated temperatures (50–100°C), and possessed thermostability at 60–90°C for up to 1 hour. Enzyme activity was reduced by EDTA (25%), SDS (16%), and PMSF (6%). This novel alkaline protease has both alkali- and thermostability that may have industrial significance. 相似文献
20.
Coypu insulin. Primary structure, conformation and biological properties of a hystricomorph rodent insulin. 总被引:2,自引:0,他引:2 下载免费PDF全文
M Bajaj T L Blundell R Horuk J E Pitts S P Wood L K Gowan C Schwabe A Wollmer J Gliemann S Gammeltoft 《The Biochemical journal》1986,238(2):345-351
Insulin from a hystricomorph rodent, coypu (Myocaster coypus), was isolated and purified to near homogeneity. Like the other insulins that have been characterized in this Suborder of Rodentia, coypu insulin also exhibits a very low (3%) biological potency, relative to pig insulin, on lipogenesis in isolated rat fat-cells. The receptor-binding affinity is significantly higher (5-8%) in rat fat-cells, in rat liver plasma membranes and in pig liver cells, indicating that the efficacy of coypu insulin on receptors is about 2-fold lower than that of pig insulin. The primary structures of the oxidized A- and B-chains were determined, and our sequence analysis confirms a previous report [Smith (1972) Diabetes 21, Suppl. 2, 457-460] that the C-terminus of the A-chain is extended by a single residue (i.e. aspartate-A22), in contrast with most other insulin sequences, which terminate at residue A21. In spite of a large number of amino acid substitutions (relative to mammalian insulins), computer-graphics model-building studies suggest a similar spatial arrangement for coypu insulin to that for pig insulin. The substitution of the zinc-co-ordinating site (B10-His----Gln) along with various substitutions on the intermolecular surfaces involved in the formation of higher aggregates are consistent with the observation that this insulin is predominantly 'monomeric' in nature. The c.d. spectrum of coypu insulin is relatively similar to those of casiragua insulin and of bovine insulin at low concentration. 相似文献