排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
The folding specificity of proteins can be simulated using simplified structural models and knowledge-based pair-potentials. However, when the same models are used to simulate systems that contain many proteins, large aggregates tend to form. In other words, these models cannot account for the fact that folded, globular proteins are soluble. Here we show that knowledge-based pair-potentials, which include explicitly calculated energy terms between the solvent and each amino acid, enable the simulation of proteins that are much less aggregation-prone in the folded state. Our analysis clarifies why including a solvent term improves the foldability. The aggregation for potentials without water is due to the unrealistically attractive interactions between polar residues, causing artificial clustering. When a water-based potential is used instead, polar residues prefer to interact with water; this leads to designed protein surfaces rich in polar residues and well-defined hydrophobic cores, as observed in real protein structures. We developed a simple knowledge-based method to calculate interactions between the solvent and amino acids. The method provides a starting point for modeling the folding and aggregation of soluble proteins. Analysis of our simple model suggests that inclusion of these solvent terms may also improve off-lattice potentials for protein simulation, design, and structure prediction. 相似文献
42.
43.
Acid mine drainage (AMD) continues to threaten water quality in many mining regions globally. Data paucity renders it challenging to inform appropriate water quality management strategies for a succinct scientific understanding of the effects of AMD on freshwater ecosystems. The current study investigated the effects of AMD collected from a defunct coalmine in Mpumalanga, South Africa, on freshwater ecosystems using a risk-based approach on five indigenous species, Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata and Oreochromis mossambicus in 2016. Species responded differently to AMD after 96 hours and 240 hours of exposure in static experimental test designs. Burnupia stenochorias was more sensitive to AMD after 96 and 240 hours of exposure, whereas O. mossambicus was tolerant during short-term exposure, but became more sensitive after 240 hours of exposure than the other species tested. The availability of metals in AMD was directly associated with dilution rate. Scenario-specific water quality guidelines for AMD have been derived as 0.122% for short-term and 0.014% for long-term exposure. These may form important indicative dilutions for other AMDs that do not match the scenarios of this study. The toxicity of AMD to a wide range of aquatic species, including field validations, requires further investigation. 相似文献
44.
45.
46.
Microbial lipids have the potential to displace terrestrial oils for fuel, value chemical, and food production, curbing the growth in tropical oil plantations and helping to reduce deforestation. However, commercialization remains elusive partly due to the lack of suitably robust organisms and their low lipid productivity. Extremely high cell densities in oleaginous cultures are needed to increase reaction rates, reduce reactor volume, and facilitate downstream processing. In this investigation, the oleaginous yeast Metschnikowia pulcherrima, a known antimicrobial producer, was cultured using four different processing strategies to achieve high cell densities and gain suitable lipid productivity. In batch mode, the yeast demonstrated lipid contents more than 40% (w/w) under high osmotic pressure. In fed-batch mode, however, high-lipid titers were prevented through inhibition above 70.0 g L−1 yeast biomass. Highly promising were a semi-continuous and continuous mode with cell recycle where cell densities of up to 122.6 g L−1 and maximum lipid production rates of 0.37 g L−1 h−1 (daily average), a nearly two-fold increase from the batch, were achieved. The findings demonstrate the importance of considering multiple fermentation modes to achieve high-density oleaginous yeast cultures generally and indicate the limitations of processing these organisms under the extreme conditions necessary for economic lipid production. 相似文献
47.
Yoony YJ Gent Karin Weijers Carla FM Molthoff Albert D Windhorst Marc C Huisman Desirée EC Smith Sumith A Kularatne Gerrit Jansen Philip S Low Adriaan A Lammertsma Conny J van der Laken 《Arthritis research & therapy》2013,15(2):R37
Introduction
Detection of (subclinical) synovitis is relevant for both early diagnosis and monitoring of therapy of rheumatoid arthritis (RA). Previously, the potential of imaging (sub)clinical arthritis was demonstrated by targeting the translocator protein in activated macrophages using (R)-[11C]PK11195 and positron emission tomography (PET). Images, however, also showed significant peri-articular background activity. The folate receptor (FR)-β is a potential alternative target for imaging activated macrophages. Therefore, the PET tracer [18F]fluoro-PEG-folate was synthesized and evaluated in both in vitro and ex vivo studies using a methylated BSA induced arthritis model.Methods
[18F]fluoro-PEG-folate was synthesized in a two-step procedure. Relative binding affinities of non-radioactive fluoro-PEG-folate, folic acid and naturally circulating 5-methyltetrahydrofolate (5-Me-THF) to FR were determined using KB cells with high expression of FR. Both in vivo [18F]fluoro-PEG-folate PET and ex vivo tissue distribution studies were performed in arthritic and normal rats and results were compared with those of the established macrophage tracer (R)-[11C]PK11195.Results
[18F]fluoro-PEG-folate was synthesized with a purity >97%, a yield of 300 to 1,700 MBq and a specific activity between 40 and 70 GBq/µmol. Relative in vitro binding affinity for FR of F-PEG-folate was 1.8-fold lower than that of folic acid, but 3-fold higher than that of 5-Me-THF. In the rat model, [18F]fluoro-PEG-folate uptake in arthritic knees was increased compared with both contralateral knees and knees of normal rats. Uptake in arthritic knees could be blocked by an excess of glucosamine-folate, consistent with [18F]fluoro-PEG-folate being specifically bound to FR. Arthritic knee-to-bone and arthritic knee-to-blood ratios of [18F]fluoro-PEG-folate were increased compared with those of (R)-[11C]PK11195. Reduction of 5-Me-THF levels in rat plasma to those mimicking human levels increased absolute [18F]fluoro-PEG-folate uptake in arthritic joints, but without improving target-to-background ratios.Conclusions
The novel PET tracer [18F]fluoro-PEG-folate, designed to target FR on activated macrophages provided improved contrast in a rat model of arthritis compared with the accepted macrophage tracer (R)-[11C]PK11195. These results warrant further exploration of [18F]fluoro-PEG-folate as a putative PET tracer for imaging (sub)clinical arthritis in RA patients. 相似文献48.
Groenewald M Groenewald JZ Harrington TC Abeln EC Crous PW 《Fungal genetics and biology : FG & B》2006,43(12):813-825
The genus Cercospora consists of numerous important, apparently asexual plant pathogens. We designed degenerate primers from homologous sequences in related species to amplify part of the C. apii, C. apiicola, C. beticola, C. zeae-maydis and C. zeina mating type genes. Chromosome walking was used to determine the full length mating type genes of these species. Primers were developed to amplify and sequence homologous portions of the mating type genes of additional species. Phylogenetic analyses of these sequences revealed little variation among members of the C. apii complex, whereas C. zeae-maydis and C. zeina were found to be dissimilar. The presence of both mating types in approximately even proportions in C. beticola, C. zeae-maydis and C. zeina populations, in contrast to single mating types in C. apii (MAT1) and C. apiicola (MAT2), suggests that a sexual cycle may be active in some of these species. 相似文献
49.
Feike R. van der Leij Edwin C. A. Abeln Anneke Hesseling-Meinders Will J. Feenstra 《Plant molecular biology》1993,21(3):567-571
We identified an open reading frame (ORF) which is located closely behind the gene encoding granulebound starch synthase (GBSS) of potato (Solanum tuberosum L.). The ORF ends with a perfect 43 bp direct repeat, which carries the stop triplet precisely at the beginning of the second repeat. The deduced protein shows homology with all known isoforms of plant -1,3-glucanases and -1,3-1,4-glucanases. Although the DNA sequence is unique in potato and tomato (Lycopersicon esculentum L.), no expression of the gene was found in these species. Taken together with the unusual codon usage and length of the predicted protein, this sequence could be a pseudogene. 相似文献
50.