首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15590篇
  免费   862篇
  国内免费   4篇
  16456篇
  2022年   65篇
  2021年   168篇
  2020年   97篇
  2019年   154篇
  2018年   183篇
  2017年   186篇
  2016年   290篇
  2015年   466篇
  2014年   558篇
  2013年   1059篇
  2012年   973篇
  2011年   999篇
  2010年   634篇
  2009年   611篇
  2008年   992篇
  2007年   1014篇
  2006年   908篇
  2005年   950篇
  2004年   941篇
  2003年   870篇
  2002年   812篇
  2001年   239篇
  2000年   224篇
  1999年   258篇
  1998年   228篇
  1997年   158篇
  1996年   161篇
  1995年   135篇
  1994年   124篇
  1993年   130篇
  1992年   177篇
  1991年   149篇
  1990年   142篇
  1989年   120篇
  1988年   94篇
  1987年   104篇
  1986年   91篇
  1985年   75篇
  1984年   99篇
  1983年   69篇
  1982年   89篇
  1981年   75篇
  1980年   73篇
  1979年   49篇
  1978年   44篇
  1977年   49篇
  1976年   57篇
  1975年   48篇
  1974年   39篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.  相似文献   
72.
73.
The time-dependent effects of daily dosing of IGF-I (1.21 mg/g) on the linear growth of the femur were investigated in mice. The femoral length and volume and the number of osteoclasts were significantly greater after IGF-I injection as compared to the non-injected control, suggesting that the IGF-I imbalance might cause a quick turnover cycle of the bone resulting in the altered femoral modeling.  相似文献   
74.
HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ~50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ~50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.  相似文献   
75.
Summary The resting cells ofCandida antarctica strain T-34 was found to produce a large amount of mannosylerythritol lipids as biosurfactants when incubated in the medium containing only the carbon source. The resting cells prepared from different water-soluble carbon sources were able to produce the lipids abundantly from water-insoluble carbon sources. Under the optimal conditions in a shake culture, the concentration of the total lipids amounted to about 47 g/l after 6 days, and the yield of the lipids became higher than that obtained by using the growing cells of the strain.  相似文献   
76.
A series of truncated analogs of α-galactosylceramide with altered ceramide moiety was prepared, and evaluated for Th2-biased response in the context of IL-4/IFN-γ ratio. Phytosphingosine-modified analogs including cyclic, aromatic and ethereal compounds as well as the C-glycoside analog of OCH (2) with their cytokine inducing profile are disclosed.  相似文献   
77.
Fe(II)/α-ketoglutarate-dependent lysine demethylases (KDMs) are attractive drug targets for several diseases including cancer. In this study, we designed and screened ortho-substituted anilides that are expected to function as Fe(II) chelators, and identified ortho-hydroxy anilide as a novel scaffold for KDM5A inhibitors. Treatment of human lung cancer A549 cells with a prodrug form of 4-carboxy-2-hydroxy-formanilide (9c) increased trimethylated lysine 4 on histone H3 level, suggesting KDM5 inhibition in the cells.  相似文献   
78.
Pinus pumila (Pallas) Regel. is a dominant dwarf tree in alpine regions of Japan. The possible factors limiting the net photosynthetic rate (Pn) of the needles of P. pumila were examined in the snow-melting (May) and the summer (August) seasons. In August, in situ maximum Pn was 20 mol kg–1 needle s–1 in the current-year needles and 25 mol kg–1 needle s–1 in the 1-year-old needles. Diurnal trends of Pn in August were positively related to fluctuations in photosynthetic photon flux density (PPFD) and no midday depression of Pn was found, indicating that a decrease in PPFD rather than an increase in needle-to-air vapor pressure deficit (W) might cause the reduction of Pn. Both stomatal conductance (gs) and Pn were lower in May than in August. In May, Pn and gs were almost zero in the morning, but gradually increased with decreasing W, reaching maximum Pn values (4 mol kg–1 needle s–1) and gs (60 mmol kg–1 needle s–1) at 16.00 hours. The daytime Pn in May was positively related to gs. Relative water content in the exposed needles above the snow in May was 83%, which was far above the lethal level. This indicates that the water flow from stems or soils to needles was enough to compensate for a small amount of water loss due to the low gs in May, although the water supplied to needles would be impeded by the low temperatures. Thus, the reduced gs in May would be important for avoiding needle desiccation, and would result in a reduced Pn.  相似文献   
79.
Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号