首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   18篇
  2023年   3篇
  2022年   10篇
  2021年   20篇
  2020年   7篇
  2019年   14篇
  2018年   17篇
  2017年   8篇
  2016年   16篇
  2015年   24篇
  2014年   13篇
  2013年   12篇
  2012年   22篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
31.
Trinucleotide repeat disorders are a set of genetic disorders characterized by the expansion of certain genes of a segment of DNA that contains a repeat of three nucleotides, thus exceeding the normal stable threshold. These repeats in the DNA cause repeats of a specific amino acid in the protein sequence, and it is the repeated amino acid that results in a defective protein. Huntington's disease is a well-known genetic disorder associated with trinucleotide repeat expansions. Patients first present clinically in midlife and manifest a typical phenotype of sporadic, rapid, and involuntary control of limb movement; stiffness of limbs; impaired cognition; severe psychiatric disturbances; and ultimately, death. There have been a number of therapeutic advances in the treatment of Huntington's disease, such as foetal neural transplantation, RNA interference, and transglutaminase inhibitor. Although there is intensive research into Huntington's disease and recent findings seem promising, effective therapeutic strategies may not be developed until the next few decades.  相似文献   
32.
33.
Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.  相似文献   
34.
Epilepsy is a neurological disorder affecting more than 50 million people worldwide. It can be controlled by antiepileptic drugs (AEDs) but more than 30% patients are still resistant to AEDs. To overcome this problem, researchers are trying to develop novel approaches to treat epilepsy including the use of herbal medicines. The γ-amino butyric acid type-A receptor associated protein (GABARAP) is ubiquitin-like modifier implicated in the intracellular trafficking of GABAAR. An in silico mutation was created at 116 amino acid position G116A, and an in silico study was carried out to identify the potential binding inhibitors (with antiepileptic properties) against the active sites of GABARAP. Five different plant derived compounds namely (a) Aconitine (b) Berberine (c) Montanine (d) Raubasine (e) Safranal were selected, and their quantitative structure-activity relationships (QSAR) have been conducted to search the inhibitory activity of the selected compounds. The results have shown maximum number of hydrogen bond (H-bond) interactions of Raubasine with highest interaction energy among all of the five compounds. So, Raubasine could be the best fit ligand of GABARAP but in vitro, and in vivo studies are necessary for further confirmation.  相似文献   
35.
36.
ABSTRACT

Spills and leakage from underground fuel storage tanks (UFSTs) can potentially contaminate soil and groundwater and pose harmful effects to public health and the environment. This study evaluated the feasibility of using volatile organic compounds (VOCs), total petroleum hydrocarbons (TPHs), electrical conductivity (EC), and pH to examine the contamination caused by leaking UFSTs. Screening water assessments for VOCs and general water quality parameters were conducted on the premises of 53 gas stations in Riyadh, Saudi Arabia, to identify potentially contaminated sites, and 25 ground bores were drilled for the quantification of TPH concentrations, EC, and pH values in 407 soil samples. The experimental approach followed in this study included geochemical analyses based on borehole drilling at five targeted gas stations, analyses of water samples from underground storage reservoirs, and analyses of soil core samples obtained from different depths to determine the degree of TPH contamination. Thirty-five VOCs were identified in the water samples collected from gas stations. Methylene chloride, tribromomethane, toluene, chlorobenzene, dibromochloromethane, and benzene were frequently encountered in most of the water samples. Some of these samples exceeded the World Health Organization and Saudi Arabian guidelines for acceptable levels of pH, total dissolved solids, chloride, nitrate, sulfate, calcium, and total hardness. The measured TPH levels were clearly indicative of subsoil contamination and subsequent accumulation in soil over time, particularly at depths of 1–6 m; there was not a noticeable dependence or impact on pH.  相似文献   
37.

Background

Growing evidences suggested that the Mycobacterium tuberculosis complex (MTBC) lineages can determine the clinical outcome of pulmonary and extra-pulmonary tuberculosis. However, limited data only available revealing such association of bacterial genotypes and clinical phenotypes from immigrant rich countries.

Methods

A multicenter study has been carried out on a collection of 2092 (1003 extrapulmonary and 1089 pulmonary) MTBC isolates. Genotyping of all the isolates were carried out by spoligotyping and 24 loci based MIRU-VNTR typing.

Results

Demographically domination of young Saudi nationals (61.4%) and men (61.2%) were found in this cohort. Lymph nodes (62.4%) and gastrointestinal sites (16.7%) were the most common anatomical sites of infection. The predominant lineages were Delhi/CAS (26.9%), EAI (14.2%) and Ghana (9.9%). Mycobacterium africanum type I and II were reported for the first time in the country among extrapulmonary cases. ‘Ancestral’ lineages M.bovis (OR-5.22; 95% CI-2.23-8.22, p-?<?0.001) and Delhi/CAS (OR-0.57; 95% CI-0.411-0.734, p-?<?0.001) were directly associated with lymph node tuberculosis and gastrointestinal tuberculosis (M. bovis-OR-0.33; 95% CI-0.085-0.567, p-0.001 and Delhi/CAS-OR-1.87; 95% CI-1.22-2.53, p-?<?0.001) respectively. Among the ‘Modern’ lineages, EAI showed significant association to central nervous system tuberculosis (OR-1.98; 95% CI-0.76-3.19, p-0.04) and Uganda-I to gastrointestinal tuberculosis (OR-2.41; 95% CI-0.77-4.06, p-0.02).

Conclusions

The findings substantially contribute to the emerging evidences that MTBC lineages influence disease phenotypes and epidemiological consequences.
  相似文献   
38.
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号