首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   18篇
  2023年   3篇
  2022年   10篇
  2021年   20篇
  2020年   7篇
  2019年   14篇
  2018年   17篇
  2017年   8篇
  2016年   16篇
  2015年   24篇
  2014年   13篇
  2013年   12篇
  2012年   22篇
  2011年   12篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
11.
Shah  Mansi  Nel  Jeremy  Almansouri  Abdulrahman  Van Duin  David  Gerber  David A. 《Mycopathologia》2019,184(1):155-158
Mycopathologia - Hepatic mucormycosis is a disease caused by a ubiquitous fungus which is especially important in patients with hematologic malignancies. We present a case of an adult patient with...  相似文献   
12.
Huang Q  Abdulrahman S  Yin J  Zwieb C 《Biochemistry》2002,41(38):11362-11371
The amino acid residues of human protein SRP54 which are required for binding to SRP RNA were identified by generating 40 nonoverlapping tri-alanine alterations within its methionine-rich M-domain (SRP54M). The mutant polypeptides were expressed in Escherichia coli, and their ability to bind to human and Methanococcus jannaschii SRP RNA were determined in vitro. Residues at positions 379-387, 394-396, 400-405, and 409-411 of human SRP54 were within the predicted RNA binding site, and their alteration abolished the binding activities of the mutant polypeptides as expected. Changes at positions 418-423 had intermediate effects. Polypeptides containing mutations of 328-TLR-330 were inactive although these residues were far away from the presumed RNA binding site in the crystal structure of the free protein. Using the structures of the E. coli Ffh/4.5S core and of the human SRP54m dimer as templates, a molecular model of the complex between human SRP RNA helix 8 and a single SRP54M molecule was constructed in which Leucine 329 was positioned in closer proximity to the RNA binding domain. This representation was supported by studies of the SRP54m monomer/dimer ratio using gel filtration. The results were consistent with a change in the shape of the signal peptide binding groove upon binding of SRP54 to SRP RNA. We propose that the SRP RNA and a small region centered at a bulky nonpolar amino acid residue at position 329 of protein SRP54 play a critical role in the SRP-dependent binding and release of signal peptides.  相似文献   
13.
Weill-Marchesani syndrome (WMS) is a rare disease characterized by short stature, brachydactyly, joint stiffness, and characteristic eye abnormalities, including microspherophakia, ectopia lentis, and glaucoma. Both autosomal recessive and autosomal dominant modes of inheritance have been described in association with WMS. We have performed a genome-wide search in two large consanguineous families of Lebanese and Saudian origin consistent with an autosomal recessive mode of inheritance. Here, we report the linkage of the disease gene to chromosome 19p13.3-p13.2 (Zmax=5.99 at theta=0 at locus D19S906). A recombination event between loci D19S905 and D19S901 defines the distal boundary, and a second recombination event between loci D19S221 and D19S840 defines the proximal boundary of the genetic interval encompassing the WMS gene (12.4 cM). We hope that our ongoing studies will lead to the identification of the disease-causing gene.  相似文献   
14.
This study reports on the purification and characterization of a cationic enzyme with chymotryptic activity from camel pancreas. The enzyme was purified 52-fold in a 48% yield by a three-step chromatographic procedure consisting of anion-exchange, cation-exchange and affinity chromatographies. The purified enzyme was homogeneous on gel isoelectric focusing and on SDS gel electrophoresis. Its isoelectric point was estimated to be 7.3 and its molecular mass was found to be 23,600 Da. The enzyme was identified as a cationic chymotrypsin according to its physiochemical properties, substrate specificity and susceptibility to inhibition. It was active towards esters of aromatic amino acids but much less active towards a leucine ester. In all cases, the kcat values of the camel enzyme were less than the corresponding values of bovine chymotrypsin A. It also showed a lower level of kininase activity. Camel chymotrypsin was more susceptible than its bovine equivalent to inhibition by soybean trypsin inhibitor and aprotinin. It showed the same pH optimium as bovine chymotrypsin A for its esterolytic activity, but was more dependent on CaCl2 for long-term stability.  相似文献   
15.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   
16.
Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) is a critical component of base excision repair that excises abasic lesions created enzymatically by the action of DNA glycosylases on modified bases and non-enzymatically by hydrolytic depurination/depyrimidination of nucleobases. Many anticancer drugs generate DNA adducts that are processed by base excision repair, and tumor resistance is frequently associated with enhanced APE-1 expression. Accordingly, APE-1 is a potential therapeutic target to treat cancer. Using computational approaches and the high resolution structure of APE-1, we developed a 5-point pharmacophore model for APE-1 small molecule inhibitors. One of the nM APE-1 inhibitors (AJAY-4) that was identified based on this model exhibited an overall median growth inhibition (GI50) of 4.19 μM in the NCI-60 cell line panel. The mechanism of action is shown to be related to the buildup of abasic sites that cause PARP activation and PARP cleavage, and the activation of caspase-3 and caspase-7, which is consistent with cell death by apoptosis. In a drug combination growth inhibition screen conducted in 10 randomly selected NCI-60 cell lines and with 20 clinically used non-genotoxic anticancer drugs, a synergy was flagged in the SK-MEL-5 melanoma cell line exposed to combinations of vemurafenib, which targets melanoma cells with V600E mutated BRAF, and AJAY-4, our most potent APE-1 inhibitor. The synergy between AJAY-4 and vemurafenib was not observed in cell lines expressing wild-type B-Raf protein. This synergistic combination may provide a solution to the resistance that develops in tumors treated with B-Raf-targeting drugs.

Electronic supplementary material

The online version of this article (doi:10.1007/s12154-015-0131-7) contains supplementary material, which is available to authorized users.  相似文献   
17.
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.  相似文献   
18.
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.  相似文献   
19.
Background: The seroprevalence rate of Helicobacter pylori in the Kingdom of Saudi Arabia (KSA) was reported to be in the range of 50–80% among mostly symptomatic patients in non‐community‐based studies. However, the seroprevalence of viral hepatitis A (HAV) underwent a marked decline in the last two decades from over 50% in 1989 to 25% in 1997 among Saudi children under the age of 12 years. The aim of this paper was to study seroprevalence rates of H. pylori and HAV among the adolescent population in three regions of KSA and to determine whether there was any correlation between them. Materials and methods: We randomly selected 1200 16–18‐year‐old students from three regions around KSA. Demographic data, including socioeconomic status (SES), were recorded, and each student was tested for the presence of H. pylori‐IgG antibodies and anti‐HAV‐IgG. Results: The results indicate a high H. pylori infection rate (47%) among this age group. Boys had a higher prevalence than girls (p = .03), and the Al‐Qaseem region had the highest prevalence (51%, p = .002). SES did not contribute to the high prevalence rates (p = .83). A cross‐tabulation of data showed that 88 (8%) of the teenagers were seropositive and that 512 (44%) were negative for both H. pylori and HAV antibodies (χ2 = 0.03, OR = 0.97, CI = 0.70–1.34). The agreement between H. pylori and HAV seropositivity was lower than would be predicted by chance (κ = ?0.03). The variables that were independently associated with seropositivity to H. pylori were being female (OR = 0.75, 95% CI = 0.60–0.95) and living in the Madinah region (OR = 0.72, 95% CI = 0.55–0.94). Conclusion: The prevalence of H. pylori in this group of adolescents was high. However, there was no correlation between H. pylori and HAV infection rates. Hence, factors contributing to the transmission source and route seem to be different.  相似文献   
20.
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1β, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1β processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1β release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1β release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1β response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1β processing and release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号